Jens Schrader

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8251480/publications.pdf

Version: 2024-02-01

84 3,893 35 60
papers citations h-index g-index

88 88 4196
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria. Trends in Biotechnology, 2009, 27, 107-115.	4.9	245
2	Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Applied Microbiology and Biotechnology, 2011, 89, 555-571.	1.7	225
3	Electroactive bacteria—molecular mechanisms and genetic tools. Applied Microbiology and Biotechnology, 2014, 98, 8481-8495.	1.7	194
4	Microbial Cell Factories for the Production of Terpenoid Flavor and Fragrance Compounds. Journal of Agricultural and Food Chemistry, 2018, 66, 2247-2258.	2.4	148
5	Biotechnological production of limonene in microorganisms. Applied Microbiology and Biotechnology, 2016, 100, 2927-2938.	1.7	136
6	Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends in Biotechnology, 2014, 32, 645-655.	4.9	134
7	Cell factory applications of the yeast <i>Kluyveromyces marxianus</i> for the biotechnological production of natural flavour and fragrance molecules. Yeast, 2015, 32, 3-16.	0.8	122
8	Substrate promiscuity of RdCCD1, a carotenoid cleavage oxygenase from Rosa damascena. Phytochemistry, 2009, 70, 457-464.	1.4	121
9	Microparticleâ€enhanced cultivation of filamentous microorganisms: Increased chloroperoxidase formation by <i>Caldariomyces fumago</i> as an example. Biotechnology and Bioengineering, 2008, 99, 491-498.	1.7	117
10	Methylobacterium extorquens: methylotrophy and biotechnological applications. Applied Microbiology and Biotechnology, 2015, 99, 517-534.	1.7	116
11	An aqueous–organic two-phase bioprocess for efficient production of the natural aroma chemicals 2-phenylethanol and 2-phenylethylacetate with yeast. Applied Microbiology and Biotechnology, 2006, 71, 440-443.	1.7	112
12	Gas diffusion electrode as novel reaction system for an electro-enzymatic process with chloroperoxidase. Green Chemistry, 2011, 13, 2686.	4.6	91
13	Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol. Metabolic Engineering, 2015, 32, 82-94.	3.6	91
14	Production of 2-phenylethanol and 2-phenylethylacetate from L-phenylalanine by coupling whole-cell biocatalysis with organophilic pervaporation. Biotechnology and Bioengineering, 2005, 92, 624-634.	1.7	77
15	Immobilized redox mediators for electrochemical NAD(P)+ regeneration. Applied Microbiology and Biotechnology, 2012, 93, 2251-2264.	1.7	75
16	Immobilization of histidine-tagged proteins on electrodes. Colloids and Surfaces B: Biointerfaces, 2011, 88, 539-551.	2.5	74
17	De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida. Microbial Cell Factories, 2014, 13, 170.	1.9	7 3
18	Enzymatic halogenation of the phenolic monoterpenes thymol and carvacrol with chloroperoxidase. Green Chemistry, 2014, 16, 1104-1108.	4.6	69

#	Article	IF	Citations
19	Integrated bioprocess for the oxidation of limonene to perillic acid with Pseudomonas putida DSM 12264. Process Biochemistry, 2009, 44, 764-771.	1.8	63
20	P450BM-3-catalyzed whole-cell biotransformation of α-pinene with recombinant Escherichia coli in an aqueous–organic two-phase system. Applied Microbiology and Biotechnology, 2009, 83, 849-857.	1.7	62
21	Integrated bioprocess for enhanced production of natural flavors and fragrances by Ceratocystis moniliformis. New Biotechnology, 2001, 17, 137-142.	2.7	61
22	Improvement of P450BM-3 whole-cell biocatalysis by integrating heterologous cofactor regeneration combining glucose facilitator and dehydrogenase in E. coli. Applied Microbiology and Biotechnology, 2008, 78, 55-65.	1.7	61
23	Multiple improvement of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous by a combination of conventional mutagenesis and metabolic pathway engineering. Biotechnology Letters, 2013, 35, 565-569.	1.1	58
24	Synthesis of (-)-menthol fatty acid esters in and from (-)-menthol and fatty acids – novel concept for lipase catalyzed esterification based on eutectic solvents. Molecular Catalysis, 2018, 458, 67-72.	1.0	57
25	Thioesterases for ethylmalonyl–CoA pathway derived dicarboxylic acid production in Methylobacterium extorquens AM1. Applied Microbiology and Biotechnology, 2014, 98, 4533-4544.	1.7	55
26	Synthesis of green note aroma compounds by biotransformation of fatty acids using yeast cells coexpressing lipoxygenase and hydroperoxide lyase. Applied Microbiology and Biotechnology, 2012, 93, 159-168.	1.7	53
27	Partial Methylation at Am100 in 18S rRNA of Baker's Yeast Reveals Ribosome Heterogeneity on the Level of Eukaryotic rRNA Modification. PLoS ONE, 2014, 9, e89640.	1.1	49
28	Improving 2-phenylethanol and 6-pentyl- $\langle i \rangle$ $\hat{l} \pm \langle i \rangle$ -pyrone production with fungi by microparticle-enhanced cultivation (MPEC). Yeast, 2014, 32, n/a-n/a.	0.8	46
29	Fungal Biotransformation of $(\hat{A}\pm)$ -Linalool. Journal of Agricultural and Food Chemistry, 2008, 56, 3287-3296.	2.4	44
30	High-level production of ethylmalonyl-CoA pathway-derived dicarboxylic acids by Methylobacterium extorquens under cobalt-deficient conditions and by polyhydroxybutyrate negative strains. Applied Microbiology and Biotechnology, 2015, 99, 3407-3419.	1.7	44
31	Microbial Flavour Production. , 2007, , 507-574.		42
32	Production of the aroma chemicals 3-(methylthio)-1-propanol and 3-(methylthio)-propylacetate with yeasts. Applied Microbiology and Biotechnology, 2008, 80, 579-587.	1.7	42
33	Biooxidation of monoterpenes with bacterial monooxygenases. Process Biochemistry, 2011, 46, 1885-1899.	1.8	40
34	Microparticle based morphology engineering of filamentous microorganisms for industrial bio-production. Biotechnology Letters, 2012, 34, 1975-1982.	1.1	38
35	Electroenzymatic process to overcome enzyme instabilities. Catalysis Communications, 2014, 51, 82-85.	1.6	38
36	Electrochemical regeneration of oxidised nicotinamide cofactors in a scalable reactor. Journal of Molecular Catalysis B: Enzymatic, 2014, 103, 94-99.	1.8	38

#	Article	IF	Citations
37	Metabolite Profiling Uncovers Plasmid-Induced Cobalt Limitation under Methylotrophic Growth Conditions. PLoS ONE, 2009, 4, e7831.	1.1	36
38	Expanding the Isoprenoid Building Block Repertoire with an IPP Methyltransferase from <i>Streptomyces monomycini</i> . ACS Synthetic Biology, 2019, 8, 1303-1313.	1.9	36
39	Monoterpenes as novel substrates for oxidation and halo-hydroxylation with chloroperoxidase from Caldariomyces fumago. Applied Microbiology and Biotechnology, 2007, 73, 1087-1096.	1.7	34
40	Mediated electron transfer with P450cin. Electrochemistry Communications, 2010, 12, 1547-1550.	2.3	34
41	Entrapment of cytochrome P450 BM-3 in polypyrrole for electrochemically-driven biocatalysis. Biotechnology Letters, 2009, 31, 765-770.	1.1	32
42	Replacing the Ethylmalonyl-CoA Pathway with the Glyoxylate Shunt Provides Metabolic Flexibility in the Central Carbon Metabolism of <i>Methylobacterium extorquens</i> AM1. ACS Synthetic Biology, 2018, 7, 86-97.	1.9	31
43	Heterologous expression of 2-methylisoborneol / 2 methylenebornane biosynthesis genes in Escherichia coli yields novel C11-terpenes. PLoS ONE, 2018, 13, e0196082.	1.1	30
44	Enzymatic production and inÂsitu separation of natural \hat{l}^2 -ionone from \hat{l}^2 -carotene. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 1771-1778.	1.4	29
45	Investigation of plasmid-induced growth defect in Pseudomonas putida. Journal of Biotechnology, 2016, 231, 167-173.	1.9	28
46	Influence of solubility-enhancing fusion proteins and organic solvents on the in vitro biocatalytic performance of the carotenoid cleavage dioxygenase AtCCD1 in a micellar reaction system. Applied Microbiology and Biotechnology, 2007, 75, 829-836.	1.7	26
47	Improved monoterpene biotransformation with Penicillium sp. by use of a closed gas loop bioreactor. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 827-836.	1.4	25
48	Enantioselective enzymatic synthesis of the \hat{l} ±-hydroxy ketone (R)-acetoin from meso-2,3-butanediol. Journal of Molecular Catalysis B: Enzymatic, 2014, 103, 61-66.	1.8	25
49	High concentrations of biotechnologically produced astaxanthin by lowering pH in a Phaffia rhodozyma bioprocess. Biotechnology and Bioprocess Engineering, 2017, 22, 319-326.	1.4	25
50	A recombinant \hat{l}_{\pm} -dioxygenase from rice to produce fatty aldehydes using E. coli. Applied Microbiology and Biotechnology, 2011, 90, 989-995.	1.7	24
51	Simulation of the current generation of a microbial fuel cell in a laboratory wastewater treatment plant. Applied Energy, 2017, 195, 942-949.	5.1	24
52	Coupling of electrochemical and optical measurements in a microtiter plate for the fast development of electro enzymatic processes with P450s. Journal of Molecular Catalysis B: Enzymatic, 2013, 92, 71-78.	1.8	23
53	Mediated electron transfer with monooxygenasesâ€"Insight in interactions between reduced mediators and the co-substrate oxygen. Journal of Molecular Catalysis B: Enzymatic, 2014, 108, 51-58.	1.8	23
54	P-LinK: A method for generating multicomponent cytochrome P450 fusions with variable linker length. BioTechniques, 2014, 57, 13-20.	0.8	20

#	Article	lF	CITATIONS
55	Lightâ€Accelerated Biocatalytic Oxidation Reactions. ChemPlusChem, 2014, 79, 1554-1557.	1.3	19
56	A simplified process design for P450 driven hydroxylation based on surface displayed enzymes. Biotechnology and Bioengineering, 2016, 113, 1225-1233.	1.7	19
57	Directed evolution of P450cin for mediated electron transfer. Protein Engineering, Design and Selection, 2017, 30, 119-127.	1.0	19
58	Regio- and Stereoselective Fungal Oxyfunctionalisation of Limonenes. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2005, 60, 459-466.	0.6	18
59	A computational protocol to predict suitable redox mediators for substitution of NAD(P)H in P450 monooxygenases. Journal of Molecular Catalysis B: Enzymatic, 2013, 88, 47-51.	1.8	16
60	Integrated bioprocess for the stereospecific production of linalool oxides from linalool with Corynespora cassiicola DSM 62475. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 1761-1769.	1.4	14
61	Biotechnological Production of Odor-Active Methyl-Branched Aldehydes by a Novel α-Dioxygenase from <i>Crocosphaera subtropica</i> Journal of Agricultural and Food Chemistry, 2020, 68, 10432-10440.	2.4	14
62	Liposome based solubilisation of carotenoid substrates for enzymatic conversion in aqueous media. Journal of Molecular Catalysis B: Enzymatic, 2011, 71, 133-138.	1.8	13
63	A biocatalytic route towards rose oxide using chloroperoxidase. Food Chemistry, 2011, 129, 1025-1029.	4.2	13
64	Efficient hydroxylation of 1,8-cineole with monoterpenoid-resistant recombinant Pseudomonas putida GS1. World Journal of Microbiology and Biotechnology, 2016, 32, 112.	1.7	13
65	Over-expression of chloroperoxidase in Caldariomyces fumago. Biotechnology Letters, 2011, 33, 2225-2231.	1.1	12
66	Bioprocess Engineering for Microbial Synthesis and Conversion of Isoprenoids. Advances in Biochemical Engineering/Biotechnology, 2015, 148, 251-286.	0.6	12
67	Micelle based delivery of carotenoid substrates for enzymatic conversion in aqueous media. Journal of Molecular Catalysis B: Enzymatic, 2012, 77, 67-73.	1.8	10
68	4-[2-O-11Z-Octadecenoyl-β-glucopyranosyl]-4,4′-diapolycopene-4,4′-dioic acid and 4-[2-O-9Z-hexadecenoyl-β-glucopyranosyl]-4,4′-diapolycopene-4,4′-dioic acid: new C30-carotenoids produced by Methylobacterium. Tetrahedron Letters, 2015, 56, 2791-2794.	0.7	10
69	Investigation of fatty aldehyde and alcohol synthesis from fatty acids by αDox- or CAR-expressing Escherichia coli. Journal of Biotechnology, 2019, 305, 11-17.	1.9	10
70	Microbial Electrosynthesis. , 2014, , 1268-1275.		10
71	White Mutants of Chloroperoxidase-Secreting Caldariomyces fumago as Superior Production Strains, Revealing an Interaction between Pigmentation and Enzyme Secretion. Applied and Environmental Microbiology, 2012, 78, 5923-5925.	1.4	8
72	Microtiter plateâ€based cultivation to investigate the growth of filamentous fungi. Engineering in Life Sciences, 2017, 17, 1064-1070.	2.0	8

#	Article	IF	CITATIONS
73	Investigation of monoterpenoid resistance mechanisms in Pseudomonas putida and their consequences for biotransformations. Applied Microbiology and Biotechnology, 2020, 104, 5519-5533.	1.7	7
74	Effect of Linoleic Acids on the Release of \hat{l}^2 -Carotene from Carotenoid-Producing Saccharomyces cerevisiae into Sunflower Oil. Journal of Molecular Microbiology and Biotechnology, 2013, 23, 233-238.	1.0	6
75	<i>Caldariomyces fumago</i> DSM1256 Contains Two Chloroperoxidase Genes, Both Encoding Secreted and Active Enzymes. Journal of Molecular Microbiology and Biotechnology, 2015, 25, 237-243.	1.0	4
76	Oxidation of fatty aldehydes to fatty acids by Escherichia coli cells expressing the Vibrio harveyi fatty aldehyde dehydrogenase (FALDH). World Journal of Microbiology and Biotechnology, 2013, 29, 569-575.	1.7	3
77	Identification of a Caldariomyces fumago Mutant Secreting an Inactive Form of Chloroperoxidase Lacking the Heme Group and N-Glycans. PLoS ONE, 2013, 8, e67857.	1.1	3
78	Partial secretome analysis of Caldariomyces fumago reveals extracellular production of the CPO co-substrate H2O2 and provides a coproduction concept for CPO and glucose oxidase. World Journal of Microbiology and Biotechnology, 2018, 34, 24.	1.7	3
79	In Situ Product Recovery of \hat{l}^2 -lonone by Organophilic Pervaporation. ACS Symposium Series, 2013, , 183-190.	0.5	2
80	Folding reporter tags can deliver misleading results upon chaperone coexpression. Journal of Biotechnology, 2009, 144, 268-271.	1.9	1
81	Design of Aqueous Micellar Reaction Systems for Aroma Production with Carotenoid Cleavage Dioxygenase. ACS Symposium Series, 2013, , 169-181.	0.5	1
82	Biotechnological Production of Fatty Aldehydes. , 2014, , 195-199.		1
83	Bioflavour Conference 2018—Biotechnology for Flavors, Fragrances, and Functional Ingredients. Journal of Agricultural and Food Chemistry, 2019, 67, 13363-13366.	2.4	1
84	Methanol als alternative Kohlenstoffquelle f $\tilde{A}^{1}/_{4}$ r mikrobielle Produktionsprozesse. BioSpektrum, 2015, 21, 672-674.	0.0	0