## Sriram Sundararajan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8250836/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Development of AFM-based techniques to measure mechanical properties of nanoscale structures.<br>Sensors and Actuators A: Physical, 2002, 101, 338-351.                                                                                                                                | 2.0 | 189       |
| 2  | Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity. Acta Biomaterialia, 2008, 4, 1401-1410.                                                                                                                                 | 4.1 | 125       |
| 3  | Topography-induced contributions to friction forces measured using an atomic force/friction force microscope. Journal of Applied Physics, 2000, 88, 4825.                                                                                                                              | 1.1 | 124       |
| 4  | Micro/nanotribological studies of polysilicon and SiC films for MEMS applications. Wear, 1998, 217, 251-261.                                                                                                                                                                           | 1.5 | 121       |
| 5  | Micro/nanotribology of ultra-thin hard amorphous carbon coatings using atomic force/friction force microscopy. Wear, 1999, 225-229, 678-689.                                                                                                                                           | 1.5 | 108       |
| 6  | Superhydrophobic coatings on Portland cement concrete surfaces. Construction and Building<br>Materials, 2017, 141, 393-401.                                                                                                                                                            | 3.2 | 103       |
| 7  | Mechanical property measurements of nanoscale structures using an atomic force microscope.<br>Ultramicroscopy, 2002, 91, 111-118.                                                                                                                                                      | 0.8 | 95        |
| 8  | Static friction and surface roughness studies of surface micromachined electrostatic micromotors<br>using an atomic force/friction force microscope. Journal of Vacuum Science and Technology A:<br>Vacuum, Surfaces and Films, 2001, 19, 1777-1785.                                   | 0.9 | 91        |
| 9  | Development of a continuous microscratch technique in an atomic force microscope and its application to study scratch resistance of ultrathin hard amorphous carbon coatings. Journal of Materials Research, 2001, 16, 437-445.                                                        | 1.2 | 83        |
| 10 | A test method for determining adhesion forces and Hamaker constants of cementitious materials using atomic force microscopy. Cement and Concrete Research, 2011, 41, 1157-1166.                                                                                                        | 4.6 | 77        |
| 11 | The effect of heat treatment routes on the retained austenite and Tribomechanical properties of carburized AISI 8620 steel. Surface and Coatings Technology, 2016, 308, 236-243.                                                                                                       | 2.2 | 53        |
| 12 | Synthesis and Physical Properties of Potential Biolubricants based on Ricinoleic Acid. JAOCS, Journal of the American Oil Chemists' Society, 2010, 87, 937-945.                                                                                                                        | 0.8 | 45        |
| 13 | Investigating the effect of retained austenite and residual stress on rolling contact fatigue of<br>carburized steel with XFEM and experimental approaches. Materials Science & Engineering A:<br>Structural Materials: Properties, Microstructure and Processing, 2018, 732, 311-319. | 2.6 | 45        |
| 14 | The effect of protein adsorption on the friction behavior of ultra-high molecular weight polyethylene. Tribology Letters, 2006, 22, 181-188.                                                                                                                                           | 1.2 | 41        |
| 15 | Iterative control approach to high-speed force-distance curve measurement using AFM: Time-dependent response of PDMS example. Ultramicroscopy, 2008, 108, 911-920.                                                                                                                     | 0.8 | 41        |
| 16 | Effect of microfabrication processes on surface roughness parameters of silicon surfaces. Surface and Coatings Technology, 2004, 188-189, 581-587.                                                                                                                                     | 2.2 | 36        |
| 17 | The effect of autocorrelation length on the real area of contact and friction behavior of rough surfaces. Journal of Applied Physics, 2005, 97, 103526.                                                                                                                                | 1.1 | 35        |
| 18 | Nanoscale Friction Switches: Friction Modulation of Monomolecular Assemblies Using External Electric Fields. Langmuir, 2009, 25, 12114-12119.                                                                                                                                          | 1.6 | 29        |

SRIRAM SUNDARARAJAN

| #  | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effect of laser treatment parameters on surface modification and tribological behavior of AISI 8620 steel. Tribology International, 2017, 112, 94-102.                                                                                                                      | 3.0 | 29        |
| 20 | Comparison of the effect of surface roughness on the micro/nanotribological behavior of<br>ultra-high-molecular-weight polyethylene (UHMWPE) in air and bovine serum solution. Journal of<br>Biomedical Materials Research - Part A, 2005, 74A, 687-695.                    | 2.1 | 28        |
| 21 | Tribological behavior and wettability of spray-coated superhydrophobic coatings on aluminum. Wear, 2017, 376-377, 1713-1719.                                                                                                                                                | 1.5 | 25        |
| 22 | Friction and wear behavior of ultrahigh molecular weight polyethylene as a function of crystallinity<br>in the presence of the phospholipid dipalmitoyl phosphatidylcholine. Journal of Biomedical Materials<br>Research - Part B Applied Biomaterials, 2010, 93B, 351-358. | 1.6 | 24        |
| 23 | Effect of retained austenite on micropitting behavior of carburized AISI 8620 steel under boundary<br>lubrication. Materialia, 2018, 3, 192-201.                                                                                                                            | 1.3 | 24        |
| 24 | The effect of contact pressure and surface texture on running-in behavior of case carburized steel under boundary lubrication. Wear, 2017, 376-377, 851-857.                                                                                                                | 1.5 | 23        |
| 25 | Evaluation of Friction Behavior and Its Contact-Area Dependence at the Micro- and Nano-Scales.<br>Tribology Letters, 2009, 36, 259-267.                                                                                                                                     | 1.2 | 21        |
| 26 | Correlation between evolution of surface roughness parameters and micropitting of carburized steel under boundary lubrication condition. Surface and Coatings Technology, 2018, 350, 445-452.                                                                               | 2.2 | 21        |
| 27 | Micro/Nanotribological Studies of Single-Crystal Silicon and Polysilicon and SiC Films for Use in MEMS Devices. , 1998, , 407-430.                                                                                                                                          |     | 21        |
| 28 | Investigating the micropitting and wear performance of copper oxide and tungsten carbide nanofluids under boundary lubrication. Wear, 2019, 428-429, 55-63.                                                                                                                 | 1.5 | 20        |
| 29 | Generating random surfaces with desired autocorrelation length. Applied Physics Letters, 2006, 88, 141903.                                                                                                                                                                  | 1.5 | 18        |
| 30 | Visualization by atomic force microscopy and FISH of the 45S rDNA gaps in mitotic chromosomes of Lolium perenne. Protoplasma, 2009, 236, 59-65.                                                                                                                             | 1.0 | 18        |
| 31 | The evolution of hardness and tribofilm growth during running-in of case carburized steel under boundary lubrication. Tribology International, 2018, 118, 1-10.                                                                                                             | 3.0 | 18        |
| 32 | Effect of retained austenite on spalling behavior of carburized AISI 8620 steel under boundary<br>lubrication. International Journal of Fatigue, 2019, 119, 238-246.                                                                                                        | 2.8 | 18        |
| 33 | Superhydrophobic engineering surfaces with tunable air-trapping ability. Journal of Micromechanics and Microengineering, 2008, 18, 035024.                                                                                                                                  | 1.5 | 17        |
| 34 | The effects of adhesive strength and load on material transfer in nanoscale wear. Computational<br>Materials Science, 2014, 95, 464-469.                                                                                                                                    | 1.4 | 17        |
| 35 | Automated trichome counting in soybean using advanced imageâ€processing techniques. Applications in Plant Sciences, 2020, 8, e11375.                                                                                                                                        | 0.8 | 17        |
| 36 | The Effect of Agglomeration Reduction on the Tribological Behavior of WS2 and MoS2 Nanoparticle<br>Additives in the Boundary Lubrication Regime. Lubricants, 2018, 6, 106.                                                                                                  | 1.2 | 14        |

SRIRAM SUNDARARAJAN

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Adhesion and friction studies of silicon surfaces processed using a microparticle-based method.<br>Tribology Letters, 2006, 23, 1-5.                                                   | 1.2 | 13        |
| 38 | An alternative method to determining optical lever sensitivity in atomic force microscopy without tip-sample contact. Review of Scientific Instruments, 2010, 81, 073711.              | 0.6 | 12        |
| 39 | Activation energy for diffusion and welding of PLA films. Polymer Engineering and Science, 2012, 52, 1693-1700.                                                                        | 1.5 | 12        |
| 40 | Structural and Chemical Evolution of the Near-Apex Region of an Atomic Force Microscope Tip Subject to Sliding. Tribology Letters, 2014, 53, 181-187.                                  | 1.2 | 12        |
| 41 | Microtribological behavior of Mo and W nanoparticle/graphene composites. Wear, 2018, 414-415, 310-316.                                                                                 | 1.5 | 12        |
| 42 | Effect of Retained Austenite on White Etching Crack Behavior of Carburized AISI 8620 Steel Under<br>Boundary Lubrication. Tribology Letters, 2019, 67, 1.                              | 1.2 | 11        |
| 43 | Method to Generate Surfaces with Desired Roughness Parameters. Langmuir, 2007, 23, 8347-8351.                                                                                          | 1.6 | 9         |
| 44 | Micro- and macroscale coefficients of friction of cementitious materials. Cement and Concrete Research, 2013, 54, 21-28.                                                               | 4.6 | 7         |
| 45 | Effect of plasticizer on the wear behavior and ice adhesion of elastomeric coatings. Wear, 2019, 426-427, 212-218.                                                                     | 1.5 | 7         |
| 46 | The Effect of Protein Adsorption on the Friction Behavior of Ultra-High Molecular Weight Polyethylene. , 2006, , 1203.                                                                 |     | 6         |
| 47 | Rubbers Based on Conjugated Soybean Oil: Synthesis and Characterization. Macromolecular Materials<br>and Engineering, 2011, 296, 444-454.                                              | 1.7 | 6         |
| 48 | Lubricant Properties of ï‰Ââ^'Â1 Hydroxy Branched Fatty Acid-Containing Natural and Synthetic Lipids.<br>Tribology Letters, 2017, 65, 1.                                               | 1.2 | 6         |
| 49 | Formation of Size and Density Controlled Nanostructures by Galvanic Displacement. Nanomaterials, 2020, 10, 644.                                                                        | 1.9 | 6         |
| 50 | Influence of Deicing Salts on the Water-Repellency of Portland Cement Concrete Coated with<br>Polytetrafluoroethylene and Polyetheretherketone. , 2017, , .                            |     | 5         |
| 51 | Influence of Surfactants on the Tribological Behavior of Nanoparticle Additives Under Boundary<br>Lubrication Conditions. Arabian Journal for Science and Engineering, 2021, 46, 7967. | 1.7 | 5         |
| 52 | An investigation on ice adhesion and wear of surfaces with differential stiffness. Wear, 2021, 476, 203662.                                                                            | 1.5 | 4         |
| 53 | Atom Scale Characterization of the Near Apex Region of an Atomic Force Microscope Tip. Microscopy and Microanalysis, 2010, 16, 636-642.                                                | 0.2 | 3         |
| 54 | The rheology of slurries of athermal cohesive micro-particles immersed in fluid: A computational and experimental comparison. Chemical Engineering Science, 2019, 193, 411-420.        | 1.9 | 3         |

SRIRAM SUNDARARAJAN

| #  | Article                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Tribological analysis of a novel lubricant additive: Pyrone esters. Wear, 2020, 442-443, 203115.                                                                | 1.5 | 3         |
| 56 | Failure mode mapping for rolling/sliding contacts under low lambda conditions. Wear, 2021, 477, 203855.                                                         | 1.5 | 3         |
| 57 | Development, Assessment and Evaluation of Remote Thermo-Fluids Laboratory Experiments: Results from a Pilot Study. , 0, , .                                     |     | 2         |
| 58 | A Comparison of Lateral Calibration Techniques for Quantitative Friction Force Microscopy. , 2005, , 821.                                                       |     | 1         |
| 59 | Iterative Control Approach to High-Speed Force-Distance Curve Measurement Using AFM for<br>Biological Applications. , 2007, , .                                 |     | 1         |
| 60 | Microfluidic Channel Fabrication With Tailored Wall Roughness. , 2012, , .                                                                                      |     | 1         |
| 61 | Rheological transition in simple shear of moderately dense assemblies of dry cohesive granules.<br>Physical Review E, 2018, 97, 062902.                         | 0.8 | 1         |
| 62 | Engineering Encounters: Teaching Educators About Engineering. Science and Children, 2017, 055, .                                                                | 0.1 | 1         |
| 63 | Tribofilm characterization and residual stress changes in rolling/sliding contacts under low lambda conditions. Wear, 2022, 500-501, 204350.                    | 1.5 | 1         |
| 64 | Virtual Training Simulator for Atomic Force Microscopy. , 2005, , 567.                                                                                          |     | 0         |
| 65 | Surface Stress Generation During Formation of Alkanethiol Self-assembled Monolayer (SAM).<br>Materials Research Society Symposia Proceedings, 2006, 951, 5.     | 0.1 | Ο         |
| 66 | Effect of Crystallinity on the Friction Behavior of Ultra-high-molecular-weight-polyethylene.<br>Materials Research Society Symposia Proceedings, 2006, 977, 1. | 0.1 | 0         |
| 67 | Instrument Statics. , 2006, , 1-31.                                                                                                                             |     | 0         |
| 68 | A method to Generate Biomimetic Superhydrophobic Engineering Surfaces. Materials Research Society<br>Symposia Proceedings, 2007, 1008, 1.                       | 0.1 | 0         |
| 69 | Iterative Control Approach to High-Speed Force-Distance Curve Measurement Using AFM for<br>Biological Applications. , 2007, , .                                 |     | 0         |
| 70 | A Relationship Between Autocorrelation Length and Adhesive Friction Behavior of Rough Surfaces. ,<br>2005, , .                                                  |     | 0         |
| 71 | Adhesion and Friction Studies of Silicon Surfaces Processed Using a Microparticle-Based Method. , 2006, , .                                                     |     | 0         |
| 72 | The Effect of Surface Processing on the Protein Adsorption and Tribomechanical Properties of<br>Ultra-High-Molecular Weight Polyethylene. , 2006, , .           |     | 0         |

| #  | Article                                                                                                                                                                                                   | IF | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 73 | Evaluation of Friction Behavior and Contact Area Dependence at the Micro and Nanoscales. , 2007, , .                                                                                                      |    | 0         |
| 74 | Friction and Wear Behavior of Ultra-High Molecular Weight Polyethylene as a Function of Polymer<br>Crystallinity. , 2007, , .                                                                             |    | 0         |
| 75 | Evaluating Tribological Properties of Materials for Total Joint Replacements Using Scanning Probe Microscopy. , 2008, , 329-350.                                                                          |    | 0         |
| 76 | A Broader Impacts Course for Engineering Graduate Students. , 0, , .                                                                                                                                      |    | 0         |
| 77 | Board # 109 :Baby Steps toward Meeting Engineering-rich Science Standards: Approaches and Results<br>from a Short "What is Engineering?" Course for K-5 Pre-service Teachers (Work in Progress). , 0, , . |    | 0         |
|    |                                                                                                                                                                                                           |    |           |