
Patrick Ninla Lemougna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8250674/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of Groundnut Shell Powder on Development of Lightweight Metakaolin Based Geopolymer Composite: Mechanical and Microstructural Properties. Silicon, 2022, 14, 449-461.	1.8	15
2	Synthesis of Volcanic Ashâ€based Porous Inorganic Polymers Using Biomass as Pore Inducing Agent: Phase Evolution and Descriptive Microstructure. Silicon, 2022, 14, 2595-2608.	1.8	7
3	Influence of Thermal Activation and Silica Modulus on the Properties of Clayey-Lateritic Based Geopolymer Binders Cured at Room Temperature. Silicon, 2022, 14, 7399-7416.	1.8	8
4	Sustainable iron-rich cements: Raw material sources and binder types. Cement and Concrete Research, 2022, 157, 106834.	4.6	32
5	Characterization and performance evaluation of laterite based geopolymer binder cured at different temperatures. Construction and Building Materials, 2021, 270, 121443.	3.2	48
6	Removal of lead ions from aqueous solution using phosphateâ€based geopolymer cement composite. Journal of Chemical Technology and Biotechnology, 2021, 96, 1358-1369.	1.6	20
7	Recycling glass wool as a fluxing agent in the production of clay- and waste-based ceramics. Journal of Cleaner Production, 2021, 289, 125673.	4.6	21
8	Synthesis and characterization of porous ceramics from spodumene tailings and waste glass wool. Ceramics International, 2021, 47, 33286-33297.	2.3	20
9	Effect of Sodium Disilicate and Metasilicate on the Microstructure and Mechanical Properties of One-Part Alkali-Activated Copper Slag/Ground Granulated Blast Furnace Slag. Materials, 2021, 14, 5505.	1.3	10
10	Effect of organic resin in glass wool waste and curing temperature on the synthesis and properties of alkali-activated pastes. Materials and Design, 2021, 212, 110287.	3.3	11
11	Effect of slag on the improvement of setting time and compressive strength of low reactive volcanic ash geopolymers synthetized at room temperature. Materials Chemistry and Physics, 2020, 239, 122077.	2.0	44
12	Thermal stability of one-part metakaolin geopolymer composites containing high volume of spodumene tailings and glass wool. Cement and Concrete Composites, 2020, 114, 103792.	4.6	59
13	Reuse of copper slag in high-strength building ceramics containing spodumene tailings as fluxing agent. Minerals Engineering, 2020, 155, 106448.	1.8	34
14	Utilisation of glass wool waste and mine tailings in high performance building ceramics. Journal of Building Engineering, 2020, 31, 101383.	1.6	26
15	Recycling lithium mine tailings in the production of low temperature (700–900â€ [~] °C) ceramics: Effect of ladle slag and sodium compounds on the processing and final properties. Construction and Building Materials, 2019, 221, 332-344.	3.2	32
16	Spodumene tailings for porcelain and structural materials: Effect of temperature (1050–1200â€ [−] °C) on the sintering and properties. Minerals Engineering, 2019, 141, 105843.	1.8	22
17	Review on the use of volcanic ashes for engineering applications. Resources, Conservation and Recycling, 2018, 137, 177-190.	5.3	103
18	Low temperature depolymerization and polycondensation of a slag-based inorganic polymer. Ceramics International, 2017, 43, 9067-9076.	2.3	37

#	Article	IF	CITATIONS
19	Synthesis and characterization of low temperature (<800 °C) ceramics from red mud geopolymer precursor. Construction and Building Materials, 2017, 131, 564-573.	3.2	70
20	Lunar regolith can allow the synthesis of cement materials with near-zero water consumption. Gondwana Research, 2017, 44, 1-6.	3.0	55
21	Study on the development of inorganic polymers from red mud and slag system: Application in mortar and lightweight materials. Construction and Building Materials, 2017, 156, 486-495.	3.2	73
22	Effect of slag and calcium carbonate addition on the development of geopolymer from indurated laterite. Applied Clay Science, 2017, 148, 109-117.	2.6	36
23	Effect of vacuum dehydration on gel structure and properties of metakaolin-based geopolymers. Ceramics International, 2017, 43, 14340-14346.	2.3	26
24	Recent developments on inorganic polymers synthesis and applications. Ceramics International, 2016, 42, 15142-15159.	2.3	119
25	A Sustainable Approach for the Geopolymerization of Natural Iron-Rich Aluminosilicate Materials. Sustainability, 2014, 6, 5535-5553.	1.6	65
26	Influence of the chemical and mineralogical composition on the reactivity of volcanic ashes during alkali activation. Ceramics International, 2014, 40, 811-820.	2.3	89
27	Influence of the processing temperature on the compressive strength of Na activated lateritic soil for building applications. Construction and Building Materials, 2014, 65, 60-66.	3.2	58
28	Influence of the activating solution composition on the stability and thermo-mechanical properties of inorganic polymers (geopolymers) from volcanic ash. Construction and Building Materials, 2013, 48, 278-286.	3.2	57
29	The role of iron in the formation of inorganic polymers (geopolymers) from volcanic ash: a 57Fe Mössbauer spectroscopy study. Journal of Materials Science, 2013, 48, 5280-5286.	1.7	113
30	Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash. Ceramics International, 2011, 37, 3011-3018.	2.3	206
31	Laterite Based Stabilized Products for Sustainable Building Applications in Tropical Countries: Review and Prospects for the Case of Cameroon. Sustainability, 2011, 3, 293-305.	1.6	49