
Alexandros Gezerlis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8249857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantum MonteÂCarlo Calculations with Chiral Effective Field Theory Interactions. Physical Review Letters, 2013, 111, 032501.	7.8	257
2	Local chiral effective field theory interactions and quantum Monte Carlo applications. Physical Review C, 2014, 90, .	2.9	186
3	Low-density neutron matter. Physical Review C, 2010, 81, .	2.9	178
4	Strongly paired fermions: Cold atoms and neutron matter. Physical Review C, 2008, 77, .	2.9	176
5	Quantum Monte Carlo calculations of neutron matter with chiral three-body forces. Physical Review C, 2016, 93, .	2.9	136
6	Neutron Matter from Low to High Density. Annual Review of Nuclear and Particle Science, 2015, 65, 303-328.	10.2	131
7	Resonantly Interacting Fermions in a Box. Physical Review Letters, 2011, 106, 235303.	7.8	81
8	Mixed-Spin Pairing Condensates in Heavy Nuclei. Physical Review Letters, 2011, 106, 252502.	7.8	68
9	Quantum Monte Carlo approaches to nuclear and atomic physics. Progress of Theoretical and Experimental Physics, 2012, 2012, .	6.6	61
10	Heavy-Light Fermion Mixtures at Unitarity. Physical Review Letters, 2009, 103, 060403.	7.8	53
11	Effective-range dependence of resonantly interacting fermions. Physical Review A, 2012, 86, .	2.5	53
12	Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials. Physical Review Letters, 2014, 113, 192501.	7.8	52
13	Diffusion Monte Carlo study of strongly interacting two-dimensional Fermi gases. Physical Review A, 2016, 93, .	2.5	36
14	Static Response of Neutron Matter. Physical Review Letters, 2016, 116, 152501.	7.8	34
15	<i>Ab initio</i> and phenomenological studies of the static response of neutron matter. Physical Review C, 2017, 95, .	2.9	23
16	Neutron polaron as a constraint on nuclear density functionals. Physical Review C, 2014, 89, .	2.9	19
17	Nonperturbative Extraction of the Effective Mass in Neutron Matter. Physical Review Letters, 2019, 122, 152701.	7.8	17
18	Effective 3-Body Interaction for Mean-Field and Density-Functional Theory. Physical Review Letters, 2010, 105, 212501.	7.8	15

#	Article	IF	CITATIONS
19	Phase separation in low-density neutron matter. Physical Review C, 2012, 85, .	2.9	11
20	Probing mixed-spin pairing in heavy nuclei. Physical Review C, 2016, 93, .	2.9	10
21	The 1S0 Pairing Gap in Neutron Matter. Condensed Matter, 2022, 7, 19.	1.8	9
22	Spin-polarized low-density neutron matter. Physical Review C, 2011, 83, .	2.9	8
23	Fermions in Two Dimensions: Scattering and Many-Body Properties. Journal of Low Temperature Physics, 2017, 189, 451-469.	1.4	8
24	Clustering of Four-Component Unitary Fermions. Physical Review Letters, 2020, 124, 143402.	7.8	8
25	Symmetry restoration in mixed-spin paired heavy nuclei. Physical Review C, 2019, 99, .	2.9	7
26	Machine-learning approach to finite-size effects in systems with strongly interacting fermions. Physical Review C, 2021, 104, .	2.9	7
27	Pairing in two-dimensional Fermi gases with a coordinate-space potential. Physical Review A, 2020, 101, .	2.5	6
28	Six textbook mistakes in computational physics. American Journal of Physics, 2021, 89, 51-60.	0.7	6
29	Satisfying the compressibility sum rule in neutron matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 818, 136347.	4.1	6
30	Neutron matter at the interface(s). European Physical Journal A, 2020, 56, 1.	2.5	4
31	From odd-even staggering to the pairing gap in neutron matter. Physical Review C, 2020, 102, .	2.9	4
32	Energy spectrum and effective mass using a nonlocal 3-body interaction. Physical Review C, 2012, 85, .	2.9	3
33	Path-integral Monte Carlo study of particles obeying quantum mechanics and classical statistics. Physical Review A, 2017, 96, .	2.5	3
34	Superfluid Neutron Matter with a Twist. Universe, 2021, 7, 24.	2.5	3
35	Equation of State and Pairing Gaps in Cold Atoms and Low-Density Neutron Matter. AIP Conference Proceedings, 2008, , .	0.4	1
36	Superfluid Pairing in Neutrons and Cold Atoms. , 2013, , 348-359.		1

Superfluid Pairing in Neutrons and Cold Atoms. , 2013, , 348-359. 36

3

#	Article	IF	CITATIONS
37	Skyrme-based extrapolation for the static response of neutron matter. Physical Review C, 2022, 105, .	2.9	1
38	Polarized pairing in neutron star crusts. , 2012, , .		0
39	Polarization in low-density neutrons. Journal of Physics: Conference Series, 2013, 426, 012011.	0.4	0
40	Chiral 2N and 3N interactions and quantum Monte Carlo applications. EPJ Web of Conferences, 2016, 113, 06019.	0.3	0
41	Strongly Coupled Fermions in Nature and the Laboratory. , 2012, , .		0
42	Polarization in low-density neutron matter. , 2013, , .		0