Maduraimuthu Djanaguiraman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8249615/publications.pdf Version: 2024-02-01

Maduraimuthu

#	Article	IF	CITATIONS
1	Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiology and Biochemistry, 2010, 48, 999-1007.	2.8	387
2	Selenium – an antioxidative protectant in soybean during senescence. Plant and Soil, 2005, 272, 77-86.	1.8	338
3	Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram ((L.) R.Wilczek. cv CO 4) roots. Plant Science, 2004, 166, 1035-1043.	1.7	259
4	Response of floret fertility and individual grain weight of wheat to high temperature stress: sensitive stages and thresholds for temperature and duration. Functional Plant Biology, 2014, 41, 1261.	1.1	231
5	Role of Cytochrome P450 Enzymes in Plant Stress Response. Antioxidants, 2020, 9, 454.	2.2	218
6	High-Temperature Stress Alleviation by Selenium Nanoparticle Treatment in Grain Sorghum. ACS Omega, 2018, 3, 2479-2491.	1.6	156
7	Impact of high temperature stress on floret fertility and individual grain weight of grain sorghum: sensitive stages and thresholds for temperature and duration. Frontiers in Plant Science, 2015, 6, 820.	1.7	142
8	Decreased photosynthetic rate under high temperature in wheat is due to lipid desaturation, oxidation, acylation, and damage of organelles. BMC Plant Biology, 2018, 18, 55.	1.6	136
9	High night temperature decreases leaf photosynthesis and pollen function in grain sorghum. Functional Plant Biology, 2011, 38, 993.	1.1	125
10	Sensitivity of sorghum pollen and pistil to highâ€ŧemperature stress. Plant, Cell and Environment, 2018, 41, 1065-1082.	2.8	120
11	Cerium Oxide Nanoparticles Decrease Drought-Induced Oxidative Damage in Sorghum Leading to Higher Photosynthesis and Grain Yield. ACS Omega, 2018, 3, 14406-14416.	1.6	115
12	Effects of high temperature stress during anthesis and grain filling periods on photosynthesis, lipids and grain yield in wheat. BMC Plant Biology, 2020, 20, 268.	1.6	112
13	Chromium interactions in plants: current status and future strategies. Metallomics, 2009, 1, 375.	1.0	102
14	Physiological differences among sorghum (Sorghum bicolor L. Moench) genotypes under high temperature stress. Environmental and Experimental Botany, 2014, 100, 43-54.	2.0	101
15	Seed treatment with nanoâ€iron (<scp>III</scp>) oxide enhances germination, seeding growth and salinity tolerance of sorghum. Journal of Agronomy and Crop Science, 2018, 204, 577-587.	1.7	99
16	Soybean Pollen Anatomy, Viability and Pod Set under High Temperature Stress. Journal of Agronomy and Crop Science, 2013, 199, 171-177.	1.7	97
17	Ethylene perception inhibitor 1-MCP decreases oxidative damage of leaves through enhanced antioxidant defense mechanisms in soybean plants grown under high temperature stress. Environmental and Experimental Botany, 2011, 71, 215-223.	2.0	94
18	Implications of High Temperature and Elevated CO2 on Flowering Time in Plants. Frontiers in Plant Science, 2016, 7, 913.	1.7	89

Maduraimuthu

#	Article	IF	CITATIONS
19	Ethylene production under high temperature stress causes premature leaf senescence in soybean. Functional Plant Biology, 2010, 37, 1071.	1.1	88
20	Rice can acclimate to lethal level of salinity by pretreatment with sublethal level of salinity through osmotic adjustment. Plant and Soil, 2006, 284, 363-373.	1.8	85
21	Quantifying pearl millet response to high temperature stress: thresholds, sensitive stages, genetic variability and relative sensitivity of pollen and pistil. Plant, Cell and Environment, 2018, 41, 993-1007.	2.8	79
22	Cotton Leaf Senescence can be Delayed by Nitrophenolate Spray Through Enhanced Antioxidant Defence System. Journal of Agronomy and Crop Science, 2009, 195, 213-224.	1.7	71
23	High Day―or Nighttime Temperature Alters Leaf Assimilation, Reproductive Success, and Phosphatidic Acid of Pollen Grain in Soybean [<i>Glycine max</i> (L.) Merr.]. Crop Science, 2013, 53, 1594-1604.	0.8	71
24	Inhibition of phospholipase D enzyme activity through hexanal leads to delayed mango (Mangifera) Tj ETQq0 0 0 Horticulturae, 2017, 218, 316-325.	rgBT /Ove 1.7	erlock 10 Tf 5 71
25	Highâ€Temperature Stress and Soybean Leaves: Leaf Anatomy and Photosynthesis. Crop Science, 2011, 51, 2125-2131.	0.8	63
26	Genotypic variation in sorghum [Sorghum bicolor (L.) Moench] exotic germplasm collections for drought and disease tolerance. SpringerPlus, 2013, 2, 650.	1.2	52
27	Drought and High Temperature Stress in Sorghum: Physiological, Genetic, and Molecular Insights and Breeding Approaches. International Journal of Molecular Sciences, 2021, 22, 9826.	1.8	39
28	Root length and root lipid composition contribute to drought tolerance of winter and spring wheat. Plant and Soil, 2019, 439, 57-73.	1.8	38
29	Reproductive success of soybean (<scp><i>Glycine max</i></scp> L. Merril) cultivars and exotic lines under high daytime temperature. Plant, Cell and Environment, 2019, 42, 321-336.	2.8	33
30	Nitrophenolates spray can alter boll abscission rate in cotton through enhanced peroxidase activity and increased ascorbate and phenolics levels. Journal of Plant Physiology, 2010, 167, 1-9.	1.6	28
31	Thresholds, sensitive stages and genetic variability of finger millet to high temperature stress. Journal of Agronomy and Crop Science, 2018, 204, 477-492.	1.7	24
32	Reproductive fitness in common bean (Phaseolus vulgaris L.) under drought stress is associated with root length and volume. Indian Journal of Plant Physiology, 2018, 23, 796-809.	0.8	21
33	Alien chromosome segment from Aegilops speltoides and Dasypyrum villosum increases drought tolerance in wheat via profuse and deep root system. BMC Plant Biology, 2019, 19, 242.	1.6	21
34	Effects of Salinity on Ion Transport, Water Relations and Oxidative Damage. , 2013, , 89-114.		19
35	Potential impacts of climate change factors and agronomic adaptation strategies on wheat yields in central highlands of Ethiopia. Climatic Change, 2020, 159, 461-479.	1.7	18
36	Response of photosynthetic performance, water relations and osmotic adjustment to salinity acclimation in two wheat cultivars. Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	13

IF # ARTICLE CITATIONS Integrating root architecture and physiological approaches for improving drought tolerance in common bean (Phaseolus vulgaris L.). Plant Physiology Reports, 2021, 26, 4-22. Iron Chlorosis., 2017, , 246-255. 38 9 High temperature stress.., 2014, , 201-220. Nitrogen and potassium deficiency identification in maize by image mining, spectral and true colour 40 0.8 8 response. Indian Journal of Plant Physiology, 2018, 23, 91-99. Agroclimatology of Maize, Sorghum, and Pearl Millet. Agronomy, 0, , 201-241. 0.2 Lipid-based Fe- and Zn- nanoformulation is more effective in alleviating Fe- and Zn- deficiency in maize. 42 0.9 5 Journal of Plant Nutrition, 2019, 42, 1693-1708. Variations in photosynthesis associated traits and grain yield of minor millets. Plant Physiology Reports, 2020, 25, 418-425. Variation in stalk rot resistance and physiological traits of sorghum genotypes in the field under 44 0.6 3 high temperature. Journal of General Plant Pathology, 2020, 86, 350-359. Agroclimatology of Oats, Barley, and Minor Millets. Agronomy, 0, , 243-277. Seed Viability Test: A Semi-Throughput Method to Screen Oilseeds for Biodiesel Production. Methods 46 0.4 0 in Molecular Biology, 2021, 2290, 129-138. A Combined Nutrient/Biocontrol Agent Mixture Improve Cassava Tuber Yield and Cassava Mosaic 1.3 Disease. Agronomy, 2021, 11, 1650. Gibberellic acid biosynthesis during dehydration phase of priming increases seed vigour of tomato. 0 1.8

Maduraimuthu

48 Plant Growth Regulation, 0, , 1.