Anne E Perring

List of Publications by Citations

Source: https://exaly.com/author-pdf/8249611/anne-e-perring-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

95 5,342 46 72 g-index

107 6,161 7.4 4.91 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
95	Surface and lightning sources of nitrogen oxides over the United States: Magnitudes, chemical evolution, and outflow. <i>Journal of Geophysical Research</i> , 2007 , 112,		257
94	Evolution of brown carbon in wildfire plumes. <i>Geophysical Research Letters</i> , 2015 , 42, 4623-4630	4.9	206
93	Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 9739-9760	6.8	188
92	Observational constraints on the chemistry of isoprene nitrates over the eastern United States. Journal of Geophysical Research, 2007, 112,		174
91	Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 10411-10433	6.8	168
90	Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass. <i>Geophysical Research Letters</i> , 2012 , 39, n/a-n/a	4.9	163
89	Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 10989-11010	6.8	158
88	Validation of OMI tropospheric NO2 observations during INTEX-B and application to constrain NOxNOx emissions over the eastern United States and Mexico. <i>Atmospheric Environment</i> , 2008 , 42, 448	30 ⁵ 449	7 ¹⁵⁸
87	Global budget and radiative forcing of black carbon aerosol: Constraints from pole-to-pole (HIPPO) observations across the Pacific. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 195-206	4.4	153
86	An observational perspective on the atmospheric impacts of alkyl and multifunctional nitrates on ozone and secondary organic aerosol. <i>Chemical Reviews</i> , 2013 , 113, 5848-70	68.1	147
85	Organic aerosol formation downwind from the Deepwater Horizon oil spill. <i>Science</i> , 2011 , 331, 1295-9	33.3	138
84	The Detection Efficiency of the Single Particle Soot Photometer. <i>Aerosol Science and Technology</i> , 2010 , 44, 612-628	3.4	136
83	Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere. <i>Nature Geoscience</i> , 2017 , 10, 486-489	18.3	114
82	A high spatial resolution retrieval of NO₂ column densities from OMI: method and evaluation. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 8543-8554	6.8	113
81	Global-scale seasonally resolved black carbon vertical profiles over the Pacific. <i>Geophysical Research Letters</i> , 2013 , 40, 5542-5547	4.9	108
80	Comparison of tropospheric NO2 from in situ aircraft measurements with near-real-time and standard product data from OMI. <i>Journal of Geophysical Research</i> , 2008 , 113,		108
79	Large upper tropospheric ozone enhancements above midlatitude North America during summer: In situ evidence from the IONS and MOZAIC ozone measurement network. <i>Journal of Geophysical Research</i> , 2006 , 111,		102

78	Direct measurements of the convective recycling of the upper troposphere. <i>Science</i> , 2007 , 315, 816-20	33.3	101
77	Impact of fuel quality regulation and speed reductions on shipping emissions: implications for climate and air quality. <i>Environmental Science & Environmental Science & Envir</i>	10.3	95
76	Black carbon aerosol size in snow. <i>Scientific Reports</i> , 2013 , 3, 1356	4.9	91
75	Atmospheric emissions from the Deepwater Horizon spill constrain air-water partitioning, hydrocarbon fate, and leak rate. <i>Geophysical Research Letters</i> , 2011 , 38, n/a-n/a	4.9	91
74	Testing and improving OMI DOMINO tropospheric NO2 using observations from the DANDELIONS and INTEX-B validation campaigns. <i>Journal of Geophysical Research</i> , 2010 , 115,		90
73	Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 8283-8308	6.8	89
72	Reactive nitrogen distribution and partitioning in the North American troposphere and lowermost stratosphere. <i>Journal of Geophysical Research</i> , 2007 , 112,		89
71	Airborne and ground-based observations of a weekend effect in ozone, precursors, and oxidation products in the California South Coast Air Basin. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		84
70	Exploring the observational constraints on the simulation of brown carbon. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 635-653	6.8	80
69	Assessing Single Particle Soot Photometer and Integrating Sphere/Integrating Sandwich Spectrophotometer measurement techniques for quantifying black carbon concentration in snow. <i>Atmospheric Measurement Techniques</i> , 2012 , 5, 2581-2592	4	80
68	Airborne observations of total RONO₂: new constraints on the yield and lifetime of isoprene nitrates. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 1451-1463	6.8	80
67	Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 7841-7858	6.8	74
66	A product study of the isoprene+NO₃ reaction. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 4945-4956	6.8	74
65	Total Peroxy Nitrates (PNs) in the atmosphere: the Thermal Dissociation-Laser Induced Fluorescence (TD-LIF) technique and comparisons to speciated PAN measurements. <i>Atmospheric Measurement Techniques</i> , 2010, 3, 593-607	4	72
64	Aerosol optical properties in the southeastern United States in summer (Part´1: Hygroscopic growth. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 4987-5007	6.8	71
63	Agricultural fires in the southeastern U.S. during SEAC4RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 7383-7414	4.4	71
62	Airborne observations of regional variation in fluorescent aerosol across the United States. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 1153-1170	4.4	68
61	Real-time sensing of bioaerosols: Review and current perspectives. <i>Aerosol Science and Technology</i> , 2020 , 54, 465-495	3.4	68

60 Impact of organic nitrates on urban ozone production. *Atmospheric Chemistry and Physics*, **2011**, 11, 40856409466

59	Constraints on aerosol processes in climate models from vertically-resolved aircraft observations of black carbon. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 5969-5986	6.8	64
58	Measurement of HO2NO2 in the free troposphere during the Intercontinental Chemical Transport Experiment⊠orth America 2004. <i>Journal of Geophysical Research</i> , 2007 , 112,		60
57	Chamber catalogues of optical and fluorescent signatures distinguish bioaerosol classes. <i>Atmospheric Measurement Techniques</i> , 2016 , 9, 3283-3292	4	60
56	Air quality implications of the Deepwater Horizon oil spill. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 20280-5	11.5	59
55	Lightning-generated NOx seen by the Ozone Monitoring Instrument during NASAR Tropical Composition, Cloud and Climate Coupling Experiment (TC4). <i>Journal of Geophysical Research</i> , 2010 , 115,		57
54	Revealing important nocturnal and day-to-day variations in fire smoke emissions through a multiplatform inversion. <i>Geophysical Research Letters</i> , 2015 , 42, 3609-3618	4.9	54
53	Airborne characterization of subsaturated aerosol hygroscopicity and dry refractive index from the surface to 6.5 km during the SEAC4RS campaign. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 4188-4210	4.4	52
52	The production and persistence of RONO₂ in the Mexico City plume. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 7215-7229	6.8	51
51	Modeling regional aerosol and aerosol precursor variability over California and its sensitivity to emissions and long-range transport during the 2010 CalNex and CARES campaigns. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 10013-10060	6.8	49
50	Airborne observations of methane emissions from rice cultivation in the Sacramento Valley of California. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		48
49	In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC⁴RS: observations of a modest aerosol enhancement aloft. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 7085-7102	6.8	46
48	Evolution of aerosol properties impacting visibility and direct climate forcing in an ammonia-rich urban environment. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		43
47	A light-weight, high-sensitivity particle spectrometer for PM2.5 aerosol measurements. <i>Aerosol Science and Technology</i> , 2016 , 50, 88-99	3.4	42
46	Global and regional effects of the photochemistry of CH₃0₂2</sub>: evidence from ARCTAS. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 4209-4219	6.8	41
45	Technique and theoretical approach for quantifying the hygroscopicity of black-carbon-containing aerosol using a single particle soot photometer. <i>Journal of Aerosol Science</i> , 2015 , 81, 110-126	4.3	34
44	Aerosol optical properties in the southeastern United States in summer IPart 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 5009-5019	6.8	33
43	Detailed comparisons of airborne formaldehyde measurements with box models during the 2006 INTEX-B and MILAGRO campaigns: potential evidence for significant impacts of unmeasured and multi-generation volatile organic carbon compounds. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 118	6.8 8 67-118	32 1 94

42	CCN spectra, hygroscopicity, and droplet activation kinetics of secondary organic aerosol resulting from the 2010 Deepwater Horizon oil spill. <i>Environmental Science & Environmental </i>)10.3	30
41	Aircraft measurements of black carbon vertical profiles show upper tropospheric variability and stability. <i>Geophysical Research Letters</i> , 2017 , 44, 1132-1140	4.9	29
40	Summertime buildup and decay of lightning NOx and aged thunderstorm outflow above North America. <i>Journal of Geophysical Research</i> , 2009 , 114,		29
39	Characteristics of black carbon aerosol from a surface oil burn during the Deepwater Horizon oil spill. <i>Geophysical Research Letters</i> , 2011 , 38, n/a-n/a	4.9	25
38	Estimating Source Region Influences on Black Carbon Abundance, Microphysics, and Radiative Effect Observed Over South Korea. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 13,527	4.4	20
37	Ambient observations of sub-1.0 hygroscopic growth factor and (RH) values: Case studies from surface and airborne measurements. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 661-67	1 -4	18
36	A High-Sensitivity Low-Cost Optical Particle Counter Design. <i>Aerosol Science and Technology</i> , 2013 , 47, 137-145	3.4	17
35	Optimized detection of particulates from liquid samples in the aerosol phase: Focus on black carbon. <i>Aerosol Science and Technology</i> , 2017 , 51, 543-553	3.4	16
34	In situ measurements of water uptake by black carbon-containing aerosol in wildfire plumes. Journal of Geophysical Research D: Atmospheres, 2017 , 122, 1086-1097	4.4	15
33	An intercomparison of aerosol absorption measurements conducted during the SEAC4RS campaign. <i>Aerosol Science and Technology</i> , 2018 , 52, 1012-1027	3.4	14
32	Surface dimming by the 2013 Rim Fire simulated by a sectional aerosol model. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 7079-7087	4.4	13
31	Ozone and alkyl nitrate formation from the Deepwater Horizon oil spill atmospheric emissions. Journal of Geophysical Research, 2012, 117, n/a-n/a		13
30	On the export of reactive nitrogen from Asia: NO_x partitioning and effects on ozone. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 4617-4630	6.8	13
29	Fluorescence calibration method for single-particle aerosol fluorescence instruments. <i>Atmospheric Measurement Techniques</i> , 2017 , 10, 1755-1768	4	12
28	High Temporal Resolution Satellite Observations of Fire Radiative Power Reveal Link Between Fire Behavior and Aerosol and Gas Emissions. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL090707	4.9	11
27	Preliminary results from the FARCE 2015 campaign: multidisciplinary study of the forestgasBerosolfloud system on the tropical island of La Rlinion. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 10591-10618	6.8	11
26	Understanding and improving model representation of aerosol optical properties for a Chinese haze event measured during KORUS-AQ. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 6455-6478	6.8	10
25	Evaluation of a Perpendicular Inlet for Airborne Sampling of Interstitial Submicron Black-Carbon Aerosol. <i>Aerosol Science and Technology</i> , 2013 , 47, 1066-1072	3.4	10

24	Global aerosol modeling with MADE3 (v3.0) in EMAC (based on v2.53): model description and evaluation. <i>Geoscientific Model Development</i> , 2019 , 12, 541-579	6.3	9
23	Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon		7
22	Model-measurement consistency and limits of bioaerosol abundance over the continental United States. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 13859-13870	6.8	7
21	Assessing recent measurement techniques for quantifying black carbon concentration in snow 2012 ,		6
20	Aerosol optical properties in the southeastern United States in summer IPart 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters		6
19	Aerosol optical properties in the southeastern United States in summer IPart 1: Hygroscopic growth		5
18	Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing		5
17	A product study of the isoprene+NO ₃ reaction		4
16	Comparison of Modeled and Measured Ice Nucleating Particle Composition in a Cirrus Cloud. <i>Journals of the Atmospheric Sciences</i> , 2019 , 76, 1015-1029	2.1	3
15	High Temporal Resolution Satellite Observations of Fire Radiative Power Reveal Link Between Fire Behavior and Aerosol and Gas Emissions		3
14	Global-scale constraints on light-absorbing anthropogenic iron oxide aerosols. <i>Npj Climate and Atmospheric Science</i> , 2021 , 4,	8	3
13	Solute dynamics in storm flow of the Ipswich River basin: effects of land use. <i>Biological Bulletin</i> , 2000 , 199, 219-21	1.5	2
12	A high spatial resolution retrieval of NO ₂ column densities from OMI: method and evaluation		2
11	Airborne observations of total RONO ₂ : new constraints on the yield and lifetime of isoprene nitrates		2
10	Drivers of the fungal spore bioaerosol budget: observational analysis and global modeling. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 4381-4401	6.8	2
9	Temporal and spatial variations of aerosol optical properties over the Korean peninsula during KORUS-AQ. <i>Atmospheric Environment</i> , 2021 , 254, 118301	5.3	2
8	Light-absorption enhancement of black carbon in the Asian outflow inferred from airborne SP2 and in-situ measurements during KORUS-AQ. <i>Science of the Total Environment</i> , 2021 , 773, 145531	10.2	2
7	Airborne Emission Rate Measurements Validate Remote Sensing Observations and Emission Inventories of Western U.S. Wildfires <i>Environmental Science & Environmental Science &</i>	10.3	2

LIST OF PUBLICATIONS

6	Model-Measurement Consistency and Limits of Bioaerosol Abundance Over the Continental United States 2019 ,		1	
5	Limited impact of sulfate-driven chemistry on black carbon aerosol aging in power plant plumes. <i>AIMS Environmental Science</i> , 2018 , 5, 195-215	1.9	1	
4	In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC ⁴ RS: observations of a modest aerosol enhancement aloft		1	
3	Alkyl nitrate production and persistence in the Mexico City Plume		1	
2	Total peroxy nitrates (PNs) in the atmosphere: the thermal dissociation-laser induced fluorescence (TD-LIF) technique and comparisons to speciated PAN measurements		1	
1	Understanding and improving model representation of aerosol optical properties for a Chinese haze event measured during KORUS-AQ 2019 ,		1	