Agustino MartÃ-nez-Antonio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8249493/publications.pdf

Version: 2024-02-01

42 papers 2,265 citations

16 h-index 289244 40 g-index

46 all docs

46 docs citations

46 times ranked

2548 citing authors

#	Article	IF	CITATIONS
1	Identifying global regulators in transcriptional regulatory networks in bacteria. Current Opinion in Microbiology, 2003, 6, 482-489.	5.1	511
2	RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Research, 2006, 34, D394-D397.	14.5	325
3	RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12. Nucleic Acids Research, 2004, 32, 303D-306.	14.5	231
4	Regulation by transcription factors in bacteria: beyond description. FEMS Microbiology Reviews, 2009, 33, 133-151.	8.6	185
5	Functional organisation of Escherichia coli transcriptional regulatory network. Journal of Molecular Biology, 2008, 381, 238-247.	4.2	143
6	Modular analysis of the transcriptional regulatory network of E. coli. Trends in Genetics, 2005, 21, 16-20.	6.7	99
7	The Use of Nanoparticles and Nanoformulations in Agriculture. Journal of Nanoscience and Nanotechnology, 2017, 17, 8699-8730.	0.9	95
8	Some physicochemical and rheological properties of starch isolated from avocado seeds. International Journal of Biological Macromolecules, 2016, 86, 302-308.	7.5	92
9	Internal-sensing machinery directs the activity of the regulatory network in Escherichia coli. Trends in Microbiology, 2006, 14, 22-27.	7.7	78
10	The Regulatory Network of Pseudomonas aeruginosa. Microbial Informatics and Experimentation, 2011, 1, 3.	7.6	72
11	The comprehensive updated regulatory network of Escherichia coli K-12. BMC Bioinformatics, 2006, 7, 5.	2.6	63
12	Transcriptional regulation shapes the organization of genes on bacterial chromosomes. Nucleic Acids Research, 2009, 37, 3680-3688.	14.5	57
13	Scaling relationship in the gene content of transcriptional machinery in bacteria. Molecular BioSystems, 2009, 5, 1494.	2.9	36
14	Transcriptional profile of Pseudomonas syringae pv. phaseolicola NPS3121 in response to tissue extracts from a susceptible Phaseolus vulgarisL. cultivar. BMC Microbiology, 2009, 9, 257.	3.3	28
15	Novel arsenic biosensor "POLA―obtained by a genetically modified E. coli bioreporter cell. Sensors and Actuators B: Chemical, 2018, 254, 1061-1068.	7.8	22
16	Coordination logic of the sensing machinery in the transcriptional regulatory network of Escherichia coli. Nucleic Acids Research, 2007, 35, 6963-6972.	14.5	21
17	Transcription Factors Exhibit Differential Conservation in Bacteria with Reduced Genomes. PLoS ONE, 2016, 11, e0146901.	2.5	19
18	Regulatory Design Governing Progression of Population Growth Phases in Bacteria. PLoS ONE, 2012, 7, e30654.	2.5	16

#	Article	IF	Citations
19	Characterization of the lipA gene encoding the major lipase from Pseudomonas aeruginosa strain IGB83. Applied Microbiology and Biotechnology, 2001, 56, 731-735.	3.6	15
20	Environmental conditions and transcriptional regulation in <i>Escherichia coli</i> integrative approach. Biotechnology and Bioengineering, 2003, 84, 743-749.	3.3	15
21	Internal Versus External Effector and Transcription Factor Gene Pairs Differ in Their Relative Chromosomal Position in Escherichia coli. Journal of Molecular Biology, 2007, 368, 263-272.	4.2	15
22	Dynamical Modeling of the Cell Cycle and Cell Fate Emergence in Caulobacter crescentus. PLoS ONE, 2014, 9, e111116.	2.5	14
23	Structural and functional map of a bacterial nucleoid. Genome Biology, 2009, 10, 247.	9.6	13
24	Engineering Escherichia coli K12 MG1655 to use starch. Microbial Cell Factories, 2014, 13, 74.	4.0	12
25	Consensus architecture of promoters and transcription units in Escherichia coli: design principles for synthetic biology. Molecular BioSystems, 2017, 13, 665-676.	2.9	9
26	Production of d-Lactate from Avocado Seed Hydrolysates by Metabolically Engineered Escherichia coli JU15. Fermentation, 2019, 5, 26.	3.0	9
27	RegulomePA: a database of transcriptional regulatory interactions in <i>Pseudomonas aeruginosa</i> PAO1. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	3.0	9
28	Quantitative modeling of the interplay between synthetic gene circuits and host physiology: experiments, results, and prospects. Current Opinion in Microbiology, 2020, 55, 48-56.	5.1	9
29	Regulatory dynamics of standard two-component systems in bacteria. Journal of Theoretical Biology, 2010, 264, 560-569.	1.7	8
30	Limited oxygen conditions as an approach to scale-up and improve d and l-lactic acid production in mineral media and avocado seed hydrolysates with metabolically engineered Escherichia coli. Bioprocess and Biosystems Engineering, 2021, 44, 379-389.	3.4	7
31	Pas de Trois: An Overview of Penta-, Tetra-, and Octo-Tricopeptide Repeat Proteins From Chlamydomonas reinhardtii and Their Role in Chloroplast Gene Expression. Frontiers in Plant Science, 2021, 12, 775366.	3.6	7
32	Conservation of transcriptional sensing systems in prokaryotes: A perspective from <i>Escherichia coli</i> . FEBS Letters, 2007, 581, 3499-3506.	2.8	6
33	Modeling Asymmetric Cell Division in Caulobacter crescentus Using a Boolean Logic Approach. Results and Problems in Cell Differentiation, 2017, 61, 1-21.	0.7	6
34	Review: Isoprenoid and aromatic cytokinins in shoot branching. Plant Science, 2022, 319, 111240.	3.6	4
35	RNA polymerases in strict endosymbiont bacteria with extreme genome reduction show distinct erosions that might result in limited and differential promoter recognition. PLoS ONE, 2021, 16, e0239350.	2.5	3
36	Hierarchical dynamics of a transcription factors network in E. coli. Molecular BioSystems, 2012, 8, 2932.	2.9	2

#	Article	IF	CITATIONS
37	Structural comparison of biological networks based on dominant vertices. Molecular BioSystems, 2013, 9, 1765.	2.9	2
38	E. coli cultures expressing a synthetic sequence of ptz gene (stz) promoted in vitro direct organogenesis in Nicotiana tabacum L Plant Cell, Tissue and Organ Culture, 2019, 137, 87-100.	2.3	2
39	SYNTHESIS OF GOLD NANOPARTICLES BY TETRACHLOROAURATE REDUCTION WITH CYCLODEXTRINS. Quimica Nova, 2018, , .	0.3	2
40	COMPARATIVE MECHANISMS FOR TRANSCRIPTION AND REGULATORY SIGNALS IN ARCHAEA AND BACTERIA. Series on Advances in Bioinformatics and Computational Biology, 2008, , 185-208.	0.2	1
41	Mechanisms and Controls of DNA Replication in Bacteria. , 0, , .		1
42	Proposal for a Minimal DNA Auto-Replicative System. , 0, , .		0