
Andreas Natsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8249356/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing skin sensitization hazard in mice and men using non-animal test methods. Regulatory Toxicology and Pharmacology, 2015, 71, 337-351.	1.3	300
2	Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Applied and Environmental Microbiology, 1996, 62, 552-563.	1.4	270
3	Performance of a novel keratinocyte-based reporter cell line to screen skin sensitizers in vitro. Toxicology and Applied Pharmacology, 2010, 245, 281-290.	1.3	267
4	A dataset on 145 chemicals tested in alternative assays for skin sensitization undergoing prevalidation. Journal of Applied Toxicology, 2013, 33, 1337-1352.	1.4	251
5	Skin Sensitizers Induce Antioxidant Response Element Dependent Genes: Application to the In Vitro Testing of the Sensitization Potential of Chemicals. Toxicological Sciences, 2008, 102, 110-119.	1.4	182
6	LC-MS–Based Characterization of the Peptide Reactivity of Chemicals to Improve the In Vitro Prediction of the Skin Sensitization Potential. Toxicological Sciences, 2008, 106, 464-478.	1.4	173
7	The Nrf2-Keap1-ARE Toxicity Pathway as a Cellular Sensor for Skin Sensitizers—Functional Relevance and a Hypothesis on Innate Reactions to Skin Sensitizers. Toxicological Sciences, 2010, 113, 284-292.	1.4	149
8	A Functional ABCC11 Allele Is Essential in the Biochemical Formation of Human Axillary Odor. Journal of Investigative Dermatology, 2010, 130, 529-540.	0.3	137
9	A Specific Bacterial Aminoacylase Cleaves Odorant Precursors Secreted in the Human Axilla. Journal of Biological Chemistry, 2003, 278, 5718-5727.	1.6	135
10	Utility and limitations of a peptide reactivity assay to predict fragrance allergens in vitro. Toxicology in Vitro, 2007, 21, 1220-1226.	1.1	133
11	Chemical Reactivity Measurement and the Predictive Identification of Skin Sensitisers. ATLA Alternatives To Laboratory Animals, 2008, 36, 215-242.	0.7	129
12	A Broad Diversity of Volatile Carboxylic Acids, Released by a Bacterial Aminoacylase from Axilla Secretions, as Candidate Molecules for the Determination of Human-Body Odor Type. Chemistry and Biodiversity, 2006, 3, 1-20.	1.0	128
13	Title is missing!. European Journal of Plant Pathology, 1998, 104, 631-643.	0.8	122
14	High Throughput Kinetic Profiling Approach for Covalent Binding to Peptides: Application to Skin Sensitization Potency of Michael Acceptor Electrophiles. Chemical Research in Toxicology, 2009, 22, 592-603.	1.7	120
15	Bayesian integrated testing strategy (ITS) for skin sensitization potency assessment: a decision support system for quantitative weight of evidence and adaptive testing strategy. Archives of Toxicology, 2015, 89, 2355-2383.	1.9	116
16	Systematic evaluation of non-animal test methods for skin sensitisation safety assessment. Toxicology in Vitro, 2015, 29, 259-270.	1.1	112
17	Filling the Concept with Data: Integrating Data from Different In Vitro and In Silico Assays on Skin Sensitizers to Explore the Battery Approach for Animal-Free Skin Sensitization Testing. Toxicological Sciences, 2009, 107, 106-121.	1.4	106
18	Cosmopolitan distribution of phlD-containing dicotyledonous crop-associated biocontrol pseudomonads of worldwide origin. FEMS Microbiology Ecology, 2001, 37, 105-116.	1.3	102

#	Article	IF	CITATIONS
19	Identification of Odoriferous Sulfanylalkanols in Human Axilla Secretions and Their Formation through Cleavage of Cysteine Precursors by a Cĩ£¿S Lyase Isolated from Axilla bacteria. Chemistry and Biodiversity, 2004, 1, 1058-1072.	1.0	99
20	The intra- and inter-laboratory reproducibility and predictivity of the KeratinoSens assay to predict skin sensitizers in vitro: Results of a ring-study in five laboratories. Toxicology in Vitro, 2011, 25, 733-744.	1.1	96
21	Bayesian integrated testing strategy to assess skin sensitization potency: from theory to practice. Journal of Applied Toxicology, 2013, 33, 1353-1364.	1.4	92
22	Contribution of the Global Regulator Gene <i>gacA</i> to Persistence and Dissemination of <i>Pseudomonas fluorescens</i> Biocontrol Strain CHAO Introduced into Soil Microcosms. Applied and Environmental Microbiology, 1994, 60, 2553-2560.	1.4	91
23	Importance of Preferential Flow and Soil Management in Vertical Transport of a Biocontrol Strain of Pseudomonas fluorescens in Structured Field Soil. Applied and Environmental Microbiology, 1996, 62, 33-40.	1.4	89
24	Predicting Skin Sensitizer Potency Based on In Vitro Data from KeratinoSens and Kinetic Peptide Binding: Global Versus Domain-Based Assessment. Toxicological Sciences, 2015, 143, 319-332.	1.4	82
25	Evaluating the performance of integrated approaches for hazard identification of skin sensitizing chemicals. Regulatory Toxicology and Pharmacology, 2014, 69, 371-379.	1.3	78
26	Body odour of monozygotic human twins: a common pattern of odorant carboxylic acids released by a bacterial aminoacylase from axilla secretions contributing to an inherited body odour type. Journal of the Royal Society Interface, 2009, 6, 377-392.	1.5	70
27	Evaluating the sensitization potential of surfactants: Integrating data from the local lymph node assay, guinea pig maximization test, and in vitro methods in a weight-of-evidence approach. Regulatory Toxicology and Pharmacology, 2011, 60, 389-400.	1.3	67
28	Investigation of odors in the fragrance industry. Chemoecology, 2010, 20, 135-147.	0.6	66
29	The Sequential Action of a Dipeptidase and a β-Lyase Is Required for the Release of the Human Body Odorant 3-Methyl-3-sulfanylhexan-1-ol from a Secreted Cys-Gly-(S) Conjugate by Corynebacteria. Journal of Biological Chemistry, 2008, 283, 20645-20652.	1.6	57
30	Utility of Rat Liver S9 Fractions to Study Skin-Sensitizing Prohaptens in a Modified KeratinoSens Assay. Toxicological Sciences, 2013, 135, 356-368.	1.4	56
31	Predicting the Bioconcentration of Fragrance Ingredients by Rainbow Trout Using Measured Rates of in Vitro Intrinsic Clearance. Environmental Science & amp; Technology, 2014, 48, 9486-9495.	4.6	54
32	Repeatability and Reproducibility of the RTgill-W1 Cell Line Assay for Predicting Fish Acute Toxicity. Toxicological Sciences, 2019, 169, 353-364.	1.4	52
33	Influence of biocontrol strain Pseudomonas fluorescens CHAO and its antibiotic overproducing derivative on the diversity of resident root colonizing pseudomonads. FEMS Microbiology Ecology, 1997, 23, 341-352.	1.3	45
34	Impact of Pseudomonas fluorescens strain CHAO and a derivative with improved biocontrol activity on the culturable resident bacterial community on cucumber roots. FEMS Microbiology Ecology, 1998, 27, 365-380.	1.3	44
35	Relating Skin Sensitizing Potency to Chemical Reactivity: Reactive Michael Acceptors Inhibit NF-κB Signaling and Are Less Sensitizing than S _N Ar- and S _N 2- Reactive Chemicals. Chemical Research in Toxicology, 2011, 24, 2018-2027.	1.7	38
36	Gene expression changes induced by skin sensitizers in the KeratinoSensâ"¢ cell line: Discriminating Nrf2-dependent and Nrf2-independent events. Toxicology in Vitro, 2013, 27, 2225-2232.	1.1	38

#	Article	IF	CITATIONS
37	Chemical Reactivity and Skin Sensitization Potential for Benzaldehydes: Can Schiff Base Formation Explain Everything?. Chemical Research in Toxicology, 2012, 25, 2203-2215.	1.7	37
38	Isolation of a bacterial enzyme releasing axillary malodor and its use as a screening target for novel deodorant formulations1. International Journal of Cosmetic Science, 2005, 27, 115-122.	1.2	36
39	Detection of potentially skin sensitizing hydroperoxides of linalool in fragranced products. Analytical and Bioanalytical Chemistry, 2014, 406, 6165-6178.	1.9	32
40	Accurate prediction of acute fish toxicity of fragrance chemicals with the RTgillâ€W1 cell assay. Environmental Toxicology and Chemistry, 2018, 37, 931-941.	2.2	32
41	Replacing the refinement for skin sensitization testing: Considerations to the implementation of adverse outcome pathway (AOP)-based defined approaches (DA) in OECD guidelines. Regulatory Toxicology and Pharmacology, 2020, 115, 104713.	1.3	32
42	Persistence of a biocontrol Pseudomonas inoculant as high populations of culturable and non-culturable cells in 200-cm-deep soil profiles. Soil Biology and Biochemistry, 2012, 44, 122-129.	4.2	31
43	Autecology of the biocontrol strain Pseudomonas fluorescens CHA0 in the rhizosphere and inside roots at later stages of plant development. FEMS Microbiology Ecology, 2006, 23, 119-130.	1.3	30
44	A fast Resazurin-based live viability assay is equivalent to the MTT-test in the KeratinoSens assay. Toxicology in Vitro, 2015, 29, 688-693.	1.1	29
45	The sensitivity of the KeratinoSensâ,,¢ assay to evaluate plant extracts: A pilot study. Toxicology in Vitro, 2013, 27, 1220-1225.	1.1	28
46	Deriving a No Expected Sensitization Induction Level for Fragrance Ingredients Without Animal Testing: An Integrated Approach Applied to Specific Case Studies. Toxicological Sciences, 2018, 165, 170-185.	1.4	28
47	Examining Uncertainty in In Vitro–In Vivo Extrapolation Applied in Fish Bioconcentration Models. Environmental Science & Technology, 2020, 54, 9483-9494.	4.6	27
48	Structure–Activity Relationship between the in Vivo Skin Sensitizing Potency of Analogues of Phenyl Glycidyl Ether and the Induction of Nrf2-Dependent Luciferase Activity in the KeratinoSens in Vitro Assay. Chemical Research in Toxicology, 2011, 24, 1312-1318.	1.7	26
49	The specific biochemistry of human axilla odour formation viewed in an evolutionary context. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190269.	1.8	26
50	Analogues of the Epoxy Resin Monomer Diglycidyl Ether of Bisphenol F: Effects on Contact Allergenic Potency and Cytotoxicity. Chemical Research in Toxicology, 2012, 25, 2469-2478.	1.7	25
51	Reporter cell lines for skin sensitization testing. Archives of Toxicology, 2015, 89, 1645-1668.	1.9	25
52	Biochemistry of Human Axilla Malodor and Chemistry of Deodorant Ingredients. Chimia, 2007, 61, 27-32.	0.3	24
53	Exposure source for skin sensitizing hydroperoxides of limonene and linalool remains elusive: An analytical market surveillance. Food and Chemical Toxicology, 2019, 127, 156-162.	1.8	24
54	Transport of a biocontrol Pseudomonas fluorescens through 2.5-M deep outdoor lysimeters and survival in the effluent water. Soil Biology and Biochemistry, 1998, 30, 621-631.	4.2	23

#	Article	IF	CITATIONS
55	Nrf2 Activation as a Key Event Triggered by Skin Sensitisers: The Development of the Stable KeratinoSens Reporter Gene Assay. ATLA Alternatives To Laboratory Animals, 2016, 44, 443-451.	0.7	23
56	A review of substances found positive in 1 of 3 in vitro tests for skin sensitization. Regulatory Toxicology and Pharmacology, 2019, 106, 352-368.	1.3	23
57	Lack of Evidence for HLA-Linked Patterns of Odorous Carboxylic Acids Released from Glutamine Conjugates Secreted in the Human Axilla. Journal of Chemical Ecology, 2010, 36, 837-846.	0.9	21
58	p-Alkyl-Benzoyl-CoA Conjugates as Relevant Metabolites of Aromatic Aldehydes With Rat Testicular Toxicity—Studies Leading to the Design of a Safer New Fragrance Chemical. Toxicological Sciences, 2017, 160, 244-255.	1.4	21
59	Stability of limonene and monitoring of a hydroperoxide in fragranced products. Flavour and Fragrance Journal, 2014, 29, 277-286.	1.2	19
60	Reaction Chemistry to Characterize the Molecular Initiating Event in Skin Sensitization: A Journey to Be Continued. Chemical Research in Toxicology, 2017, 30, 315-331.	1.7	18
61	Chemical Basis for the Extreme Skin Sensitization Potency of (<i>E</i>)-4-(Ethoxymethylene)-2-phenyloxazol-5(4 <i>H</i>)-one. Chemical Research in Toxicology, 2010, 23, 1913-1920.	1.7	17
62	Use of in vitro testing to identify an unexpected skin sensitizing impurity in a commercial product: A case study. Toxicology in Vitro, 2010, 24, 411-416.	1.1	14
63	Respiratory sensitization: Advances in assessing the risk of respiratory inflammation and irritation. Toxicology in Vitro, 2011, 25, 1251-1258.	1.1	13
64	What Makes Us Smell: The Biochemistry of Body Odour and the Design of New Deodorant Ingredients. Chimia, 2015, 69, 414.	0.3	13
65	Dual regulation of skin sensitizer-induced HMOX1 expression by Bach1 and Nrf2: Comparison to regulation of the AKR1C2-ARE element in the KeratinoSens cell line. Toxicology and Applied Pharmacology, 2015, 288, 281-288.	1.3	12
66	A human chemosensory modality to detect peptides in the nose?. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20131678.	1.2	11
67	Interspecies assessment factors and skin sensitization risk assessment. Regulatory Toxicology and Pharmacology, 2018, 97, 186-188.	1.3	11
68	Epoxyalcohols: Bioactivation and Conjugation Required for Skin Sensitization. Chemical Research in Toxicology, 2014, 27, 1860-1870.	1.7	10
69	A New Family of Rigid Dienone Musks Challenges the Perceptive Range of the Human Olfactory Receptor OR5AN1. Synlett, 2020, 31, 972-976.	1.0	8
70	Oxidative Tryptophan Modification by Terpene- and Squalene-Hydroperoxides and a Possible Link to Cross-Reactions in Diagnostic Tests. Chemical Research in Toxicology, 2015, 28, 1205-1208.	1.7	7
71	Interlaboratory evaluation of methods to quantify skin sensitizing hydroperoxides potentially formed from linalool and limonene in perfumes. Flavour and Fragrance Journal, 2017, 32, 277-285.	1.2	7
72	Nature-derived epoxy resins: Synthesis, allergenicity, and thermosetting properties of pinoresinol diglycidyl ether. Toxicology and Industrial Health, 2022, 38, 259-269.	0.6	7

#	Article	IF	CITATIONS
73	Effect of Fluorination on Skin Sensitization Potential and Fragrant Properties of Cinnamyl Compounds. Chemistry and Biodiversity, 2018, 15, e1800013.	1.0	5
74	Benzoyl-CoA conjugate accumulation as an initiating event for male reprotoxic effects in the rat? Structure–activity analysis, species specificity, and in vivo relevance. Archives of Toxicology, 2020, 94, 4115-4129.	1.9	5
75	Interlaboratory evaluation of methods to quantify skinâ€sensitizing hydroperoxides of limonene and linalool (<scp>II</scp>): Analysis in cosmetic bases. Flavour and Fragrance Journal, 2018, 33, 322-330.	1.2	4
76	Scientific discrepancies in European regulatory proposals on endocrine disruptors—REACH regulation quo vadis?. Archives of Toxicology, 2021, 95, 3601-3609.	1.9	4
77	Assessing Experimental Uncertainty in Defined Approaches: Borderline Ranges for <i>In Chemico</i> and <i>In Vitro</i> Skin Sensitization Methods Determined from Ring Trial Data. Applied in Vitro Toxicology, 2021, 7, 102-111.	0.6	4
78	Fragrance raw materials and essential oils can reduce prostaglandin E2formation in keratinocytes and reconstituted human epidermis. International Journal of Cosmetic Science, 2007, 29, 369-376.	1.2	3
79	Der menschlichen Duftchemie auf der Spur. Chemie in Unserer Zeit, 2012, 46, 110-116.	0.1	3
80	Bacteria and human (mal)-odours. Flavour and Fragrance Journal, 2013, 28, 199-199.	1.2	3
81	PeBiToSensâ"¢: A Platform for PBT Screening of Fragrance Ingredients Without Animal Testing. Chimia, 2020, 74, 168.	0.3	3
82	Biochemistry and Genetics of Human Axilla Odor. , 2017, , 123-124.		3
83	Development of a high-throughput keratinocyte-based standard assay to detect skin sensitizers based on ARE-dependent gene activity. Toxicology Letters, 2009, 189, S69.	0.4	1
84	Validation of a malodour-forming enzyme as a target for deodorant actives:in vivotesting of a glutamine conjugate targeting a corynebacterialNI±-acyl-glutamine-aminoacylase. Flavour and Fragrance Journal, 2013, 28, 262-268.	1.2	1
85	Response to the Letter to the Editor Regarding Our Article (Natsch et al., 2015). Chemical Research in Toxicology, 2015, 28, 2082-2084.	1.7	1
86	Letter to the editor regarding the article by Roberts, 2018. Regulatory Toxicology and Pharmacology, 2019, 102, 115-116.	1.3	1
87	A species specific metabolism leading to male rat reprotoxicity of Cyclamen aldehyde: in vivo and in vitro evaluation. Food and Chemical Toxicology, 2021, 153, 112243.	1.8	1
88	Autecology of the biocontrol strain Pseudomonas fluorescens CHA0 in the rhizosphere and inside roots at later stages of plant development. FEMS Microbiology Ecology, 1997, 23, 119-130.	1.3	1
89	Filling the concept with data: Integrating data from different in vitro and in silico assays on skin sensitizers to explore the battery approach for animal-free skin sensitization testing. Toxicology Letters, 2008, 180, S101.	0.4	0

90 Skin Sensitization of Odorant Materials. , 2017, , 89-90.