Cornelia M Weyand

List of Publications by Citations

Source: https://exaly.com/author-pdf/8249227/cornelia-m-weyand-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

169 31,446 357 93 h-index g-index citations papers 37,684 384 10 7.34 L-index ext. citations ext. papers avg, IF

#	Paper	IF	Citations
357	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). <i>Autophagy</i> , 2016 , 12, 1-222	10.2	3838
356	Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. Journal of Experimental Medicine, 2007 , 204, 2449-60	16.6	1218
355	Chronic inflammation in the etiology of disease across the life span. <i>Nature Medicine</i> , 2019 , 25, 1822-18	1 33 0.5	830
354	The influence of age on T cell generation and TCR diversity. <i>Journal of Immunology</i> , 2005 , 174, 7446-52	5.3	595
353	Inflammation, immunity, and hypertension. <i>Hypertension</i> , 2011 , 57, 132-40	8.5	565
352	Lymphoid neogenesis in rheumatoid synovitis. <i>Journal of Immunology</i> , 2001 , 167, 1072-80	5.3	534
351	Medium- and large-vessel vasculitis. New England Journal of Medicine, 2003, 349, 160-9	59.2	522
350	Understanding immunosenescence to improve responses to vaccines. <i>Nature Immunology</i> , 2013 , 14, 42	8 13)61	446
349	Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. <i>Circulation</i> , 2000 , 101, 2883-8	16.7	425
348	Diversity and clonal selection in the human T-cell repertoire. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 13139-44	11.5	417
347	T cell activation in rheumatoid synovium is B cell dependent. <i>Journal of Immunology</i> , 2001 , 167, 4710-8	5.3	388
346	The influence of HLA-DRB1 genes on disease severity in rheumatoid arthritis. <i>Annals of Internal Medicine</i> , 1992 , 117, 801-6	8	346
345	Infliximab for maintenance of glucocorticosteroid-induced remission of giant cell arteritis: a randomized trial. <i>Annals of Internal Medicine</i> , 2007 , 146, 621-30	8	345
344	Value of immunological markers in predicting responsiveness to influenza vaccination in elderly individuals. <i>Journal of Virology</i> , 2001 , 75, 12182-7	6.6	340
343	Perturbation of the T-cell repertoire in patients with unstable angina. <i>Circulation</i> , 1999 , 100, 2135-9	16.7	319
342	T cell subset-specific susceptibility to aging. <i>Clinical Immunology</i> , 2008 , 127, 107-18	9	295
341	Major histocompatibility complex class I-recognizing receptors are disease risk genes in rheumatoid arthritis. <i>Journal of Experimental Medicine</i> , 2001 , 193, 1159-67	16.6	295

(2015-2002)

340	T-cell-mediated lysis of endothelial cells in acute coronary syndromes. <i>Circulation</i> , 2002 , 105, 570-5	16.7	284
339	The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. <i>Journal of Experimental Medicine</i> , 2016 , 213, 337-54	16.6	268
338	Th17 and Th1 T-cell responses in giant cell arteritis. Circulation, 2010, 121, 906-15	16.7	266
337	Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. <i>Nature Medicine</i> , 2012 , 18, 1518-24	50.5	246
336	Immune mechanisms in medium and large-vessel vasculitis. <i>Nature Reviews Rheumatology</i> , 2013 , 9, 731	-401	243
335	Vessel-specific Toll-like receptor profiles in human medium and large arteries. <i>Circulation</i> , 2008 , 118, 1276-84	16.7	242
334	Giant-cell arteritis and polymyalgia rheumatica. Annals of Internal Medicine, 2003, 139, 505-15	8	239
333	Tissue cytokine patterns in patients with polymyalgia rheumatica and giant cell arteritis. <i>Annals of Internal Medicine</i> , 1994 , 121, 484-91	8	239
332	Clinical practice. Giant-cell arteritis and polymyalgia rheumatica. <i>New England Journal of Medicine</i> , 2014 , 371, 50-7	59.2	229
331	Correlation of interleukin-6 production and disease activity in polymyalgia rheumatica and giant cell arteritis. <i>Arthritis and Rheumatism</i> , 1993 , 36, 1286-94		228
330	T cell development and receptor diversity during aging. Current Opinion in Immunology, 2005, 17, 468-7	'5 7.8	222
329	Treatment of giant cell arteritis: interleukin-6 as a biologic marker of disease activity. <i>Arthritis and Rheumatism</i> , 2000 , 43, 1041-8		220
328	Down-regulation of CD28 expression by TNF-alpha. <i>Journal of Immunology</i> , 2001 , 167, 3231-8	5.3	219
327	Treatment of giant cell arteritis using induction therapy with high-dose glucocorticoids: a double-blind, placebo-controlled, randomized prospective clinical trial. <i>Arthritis and Rheumatism</i> , 2006 , 54, 3310-8		215
326	Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. <i>Journal of Experimental Medicine</i> , 2013 , 210, 2119-34	16.6	209
325	Aging and T-cell diversity. Experimental Gerontology, 2007, 42, 400-6	4.5	196
324	Pathogen-sensing plasmacytoid dendritic cells stimulate cytotoxic T-cell function in the atherosclerotic plaque through interferon-alpha. <i>Circulation</i> , 2006 , 114, 2482-9	16.7	196
323	Naive T cell maintenance and function in human aging. <i>Journal of Immunology</i> , 2015 , 194, 4073-80	5.3	193

322	BLyS and APRIL in rheumatoid arthritis. <i>Journal of Clinical Investigation</i> , 2005 , 115, 3083-92	15.9	192
321	Inhibition and genetic ablation of the B7/CD28 T-cell costimulation axis prevents experimental hypertension. <i>Circulation</i> , 2010 , 122, 2529-37	16.7	189
320	Ectopic germinal center formation in rheumatoid synovitis. <i>Annals of the New York Academy of Sciences</i> , 2003 , 987, 140-9	6.5	186
319	Regulatory T cells and the immune aging process: a mini-review. <i>Gerontology</i> , 2014 , 60, 130-7	5.5	185
318	Activation of arterial wall dendritic cells and breakdown of self-tolerance in giant cell arteritis. Journal of Experimental Medicine, 2004 , 199, 173-83	16.6	183
317	CD4+,CD28- T cells in rheumatoid arthritis patients combine features of the innate and adaptive immune systems. <i>Arthritis and Rheumatism</i> , 2001 , 44, 13-20		181
316	Functional subsets of CD4 T cells in rheumatoid synovitis. <i>Arthritis and Rheumatism</i> , 1998 , 41, 2108-16		180
315	Killer cell activating receptors function as costimulatory molecules on CD4+CD28null T cells clonally expanded in rheumatoid arthritis. <i>Journal of Immunology</i> , 2000 , 165, 1138-45	5.3	180
314	Formation of new vasa vasorum in vasculitis. Production of angiogenic cytokines by multinucleated giant cells. <i>American Journal of Pathology</i> , 1999 , 155, 765-74	5.8	171
313	Premature telomeric loss in rheumatoid arthritis is genetically determined and involves both myeloid and lymphoid cell lineages. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 13471-6	11.5	158
312	Immune aging and autoimmunity. Cellular and Molecular Life Sciences, 2012, 69, 1615-23	10.3	156
311	Functional properties of CD4+ CD28- T cells in the aging immune system. <i>Mechanisms of Ageing and Development</i> , 1998 , 102, 131-47	5.6	156
310	Successful and Maladaptive T Cell Aging. <i>Immunity</i> , 2017 , 46, 364-378	32.3	155
309	Single-channel and whole-cell recordings of mitogen-regulated inward currents in human cloned helper T lymphocytes. <i>Nature</i> , 1986 , 323, 269-73	50.4	152
308	Platelet-derived growth factor, intimal hyperplasia, and ischemic complications in giant cell arteritis. <i>Arthritis and Rheumatism</i> , 1998 , 41, 623-33		150
307	HLA-DRB1 alleles in polymyalgia rheumatica, giant cell arteritis, and rheumatoid arthritis. <i>Arthritis and Rheumatism</i> , 1994 , 37, 514-20		150
306	Aldose reductase functions as a detoxification system for lipid peroxidation products in vasculitis. Journal of Clinical Investigation, 1999 , 103, 1007-13	15.9	149
305	Aging, autoimmunity and arthritis: T-cell senescence and contraction of T-cell repertoire diversity - catalysts of autoimmunity and chronic inflammation. <i>Arthritis Research</i> , 2003 , 5, 225-34		145

(2002-2006)

304	TRAIL-expressing T cells induce apoptosis of vascular smooth muscle cells in the atherosclerotic plaque. <i>Journal of Experimental Medicine</i> , 2006 , 203, 239-50	16.6	144	
303	Clonality and longevity of CD4+CD28null T cells are associated with defects in apoptotic pathways. <i>Journal of Immunology</i> , 2000 , 165, 6301-7	5.3	143	
302	Aging-related deficiency of CD28 expression in CD4+ T cells is associated with the loss of gene-specific nuclear factor binding activity. <i>Journal of Biological Chemistry</i> , 1998 , 273, 8119-29	5.4	143	
301	CD8 T cells are required for the formation of ectopic germinal centers in rheumatoid synovitis. <i>Journal of Experimental Medicine</i> , 2002 , 195, 1325-36	16.6	142	
300	Disease patterns and tissue cytokine profiles in giant cell arteritis. <i>Arthritis and Rheumatism</i> , 1997 , 40, 19-26		141	
299	Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. <i>Science Translational Medicine</i> , 2016 , 8, 331ra38	17.5	140	
298	Homeostatic control of T-cell generation in neonates. <i>Blood</i> , 2003 , 102, 1428-34	2.2	140	
297	Induction of hypertension and peripheral inflammation by reduction of extracellular superoxide dismutase in the central nervous system. <i>Hypertension</i> , 2010 , 55, 277-83, 6p following 283	8.5	137	
296	Telomerase insufficiency in rheumatoid arthritis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 4360-5	11.5	136	
295	Immunosenescence, autoimmunity, and rheumatoid arthritis. Experimental Gerontology, 2003, 38, 833-4	14 .5	136	
294	Aging of the Immune System. Mechanisms and Therapeutic Targets. <i>Annals of the American Thoracic Society</i> , 2016 , 13 Suppl 5, S422-S428	4.7	134	
293	Ectopic lymphoid organogenesis: a fast track for autoimmunity. <i>American Journal of Pathology</i> , 2001 , 159, 787-93	5.8	130	
292	Surgical pathology of noninfectious ascending aortitis: a study of 45 cases with emphasis on an isolated variant. <i>American Journal of Surgical Pathology</i> , 2006 , 30, 1150-8	6.7	129	
291	Arterial wall injury in giant cell arteritis. Arthritis and Rheumatism, 1999, 42, 844-53		128	
290	Activation of Human T Cells in Hypertension: Studies of Humanized Mice and Hypertensive Humans. <i>Hypertension</i> , 2016 , 68, 123-32	8.5	126	
289	Immunoinhibitory checkpoint deficiency in medium and large vessel vasculitis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E970-E979	11.5	124	
288	Immunometabolism in early and late stages of rheumatoid arthritis. <i>Nature Reviews Rheumatology</i> , 2017 , 13, 291-301	8.1	122	
287	Therapeutic effects of acetylsalicylic acid in giant cell arteritis. <i>Arthritis and Rheumatism</i> , 2002 , 46, 457-6	66	119	

286	Immune activation caused by vascular oxidation promotes fibrosis and hypertension. <i>Journal of Clinical Investigation</i> , 2016 , 126, 50-67	15.9	116
285	Deficiency of the DNA repair enzyme ATM in rheumatoid arthritis. <i>Journal of Experimental Medicine</i> , 2009 , 206, 1435-49	16.6	115
284	Simvastatin suppresses endotoxin-induced upregulation of toll-like receptors 4 and 2 in vivo. <i>Atherosclerosis</i> , 2006 , 189, 408-13	3.1	115
283	Modulation of CD28 expression with anti-tumor necrosis factor alpha therapy in rheumatoid arthritis. <i>Arthritis and Rheumatism</i> , 2005 , 52, 2996-3003		113
282	Synergistic proinflammatory effects of the antiviral cytokine interferon-alpha and Toll-like receptor 4 ligands in the atherosclerotic plaque. <i>Circulation</i> , 2007 , 116, 2043-52	16.7	112
281	Cardiorheumatology: cardiac involvement in systemic rheumatic disease. <i>Nature Reviews Cardiology</i> , 2015 , 12, 168-76	14.8	111
280	Regulation of T cell receptor signaling by activation-induced zinc influx. <i>Journal of Experimental Medicine</i> , 2011 , 208, 775-85	16.6	111
279	Epigenomics of human CD8 T cell differentiation and aging. Science Immunology, 2017, 2,	28	110
278	Dendritic cells in atherosclerotic disease. <i>Clinical Immunology</i> , 2010 , 134, 25-32	9	108
277	Functional profile of activated dendritic cells in unstable atherosclerotic plaque. <i>Basic Research in Cardiology</i> , 2007 , 102, 123-32	11.8	107
276	Trapping of misdirected dendritic cells in the granulomatous lesions of giant cell arteritis. <i>American Journal of Pathology</i> , 2002 , 161, 1815-23	5.8	107
275	De novo expression of killer immunoglobulin-like receptors and signaling proteins regulates the cytotoxic function of CD4 T cells in acute coronary syndromes. <i>Circulation Research</i> , 2003 , 93, 106-13	15.7	106
274	Mechanisms underlying T cell ageing. <i>Nature Reviews Immunology</i> , 2019 , 19, 573-583	36.5	105
273	Blocking the NOTCH pathway inhibits vascular inflammation in large-vessel vasculitis. <i>Circulation</i> , 2011 , 123, 309-18	16.7	101
272	Tissue-destructive macrophages in giant cell arteritis. Circulation Research, 1999, 84, 1050-8	15.7	101
271	Inhibition of JAK-STAT Signaling Suppresses Pathogenic Immune Responses in Medium and Large Vessel Vasculitis. <i>Circulation</i> , 2018 , 137, 1934-1948	16.7	100
270	CD28 loss in senescent CD4+ T cells: reversal by interleukin-12 stimulation. <i>Blood</i> , 2003 , 101, 3543-9	2.2	99
269	Interleukin 12 induces T-cell recruitment into the atherosclerotic plaque. <i>Circulation Research</i> , 2006 , 98, 524-31	15.7	96

(1998-2000)

268	Central role of thrombospondin-1 in the activation and clonal expansion of inflammatory T cells. <i>Journal of Immunology</i> , 2000 , 164, 2947-54	5.3	96
267	The Repertoire of CD4+ CD28LT Cells in Rheumatoid Arthritis. <i>Molecular Medicine</i> , 1996 , 2, 608-618	6.2	95
266	T-cell metabolism in autoimmune disease. Arthritis Research and Therapy, 2015, 17, 29	5.7	94
265	Co-stimulatory pathways controlling activation and peripheral tolerance of human CD4+CD28- T cells. <i>European Journal of Immunology</i> , 1997 , 27, 1082-90	6.1	94
264	T-cell aging in rheumatoid arthritis. Current Opinion in Rheumatology, 2014, 26, 93-100	5.3	93
263	Signaling pathways in aged T cells - a reflection of T cell differentiation, cell senescence and host environment. <i>Seminars in Immunology</i> , 2012 , 24, 365-72	10.7	93
262	Giant Cell Vasculitis Is a T Cell-Dependent Disease. <i>Molecular Medicine</i> , 1997 , 3, 530-543	6.2	93
261	Formation of the killer Ig-like receptor repertoire on CD4+CD28null T cells. <i>Journal of Immunology</i> , 2002 , 168, 3839-46	5-3	92
260	IFN-land IL-17: the two faces of T-cell pathology in giant cell arteritis. <i>Current Opinion in Rheumatology</i> , 2011 , 23, 43-9	5.3	90
259	Production of cytokines and metalloproteinases in rheumatoid synovitis is T cell dependent. <i>Clinical Immunology</i> , 1999 , 90, 65-78	9	90
258	Toll-like receptors 4 and 5 induce distinct types of vasculitis. Circulation Research, 2009, 104, 488-95	15.7	89
257	Telomeres, immune aging and autoimmunity. Experimental Gerontology, 2006, 41, 246-51	4.5	88
256	Immunopathways in giant cell arteritis and polymyalgia rheumatica. Autoimmunity Reviews, 2004, 3, 46-	-5 3₃.6	88
255	Clinical and pathological evolution of giant cell arteritis: a prospective study of follow-up temporal artery biopsies in 40 treated patients. <i>Modern Pathology</i> , 2017 , 30, 788-796	9.8	86
254	Influence of immune aging on vaccine responses. <i>Journal of Allergy and Clinical Immunology</i> , 2020 , 145, 1309-1321	11.5	85
253	NADPH oxidase deficiency underlies dysfunction of aged CD8+ Tregs. <i>Journal of Clinical Investigation</i> , 2016 , 126, 1953-67	15.9	84
252	Developments in the scientific understanding of rheumatoid arthritis. <i>Arthritis Research and Therapy</i> , 2009 , 11, 249	5.7	83
251	Heterogeneity of rheumatoid arthritis: from phenotypes to genotypes. <i>Seminars in Immunopathology</i> , 1998 , 20, 5-22		83

250	Emergence of oligoclonal T cell populations following therapeutic T cell depletion in rheumatoid arthritis. <i>Arthritis and Rheumatism</i> , 1995 , 38, 1242-51		83
249	Molecular fingerprint of interferon-gamma signaling in unstable angina. <i>Circulation</i> , 2001 , 103, 1509-14	16.7	82
248	Metabolic signatures of T-cells and macrophages in rheumatoid arthritis. <i>Current Opinion in Immunology</i> , 2017 , 46, 112-120	7.8	81
247	Macrophages in vascular inflammationFrom atherosclerosis to vasculitis. <i>Autoimmunity</i> , 2015 , 48, 139-	·5 ₃ 1	81
246	Inhibitory CD8+ T cells in autoimmune disease. <i>Human Immunology</i> , 2008 , 69, 781-9	2.3	80
245	Defective proliferative capacity and accelerated telomeric loss of hematopoietic progenitor cells in rheumatoid arthritis. <i>Arthritis and Rheumatism</i> , 2008 , 58, 990-1000		80
244	The immunology of rheumatoid arthritis. <i>Nature Immunology</i> , 2021 , 22, 10-18	19.1	80
243	Autophagy in autoimmune disease. <i>Journal of Molecular Medicine</i> , 2015 , 93, 707-17	5.5	79
242	T-cell regulation in rheumatoid arthritis. Current Opinion in Rheumatology, 2004, 16, 212-7	5.3	79
241	Chronic inflammation and aging: DNA damage tips the balance. <i>Current Opinion in Immunology</i> , 2012 , 24, 488-93	7.8	78
240	The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. <i>Journal of Cell Biology</i> , 2016 , 212, 2126OIA43	7.3	78
239	Rejuvenating the immune system in rheumatoid arthritis. <i>Nature Reviews Rheumatology</i> , 2009 , 5, 583-8	8.1	77
238	The immunopathology of giant cell arteritis: diagnostic and therapeutic implications. <i>Journal of Neuro-Ophthalmology</i> , 2012 , 32, 259-65	2.6	77
237	T cell costimulation by fractalkine-expressing synoviocytes in rheumatoid arthritis. <i>Arthritis and Rheumatism</i> , 2005 , 52, 1392-401		77
236	The janus head of T cell aging - autoimmunity and immunodeficiency. <i>Frontiers in Immunology</i> , 2013 , 4, 131	8.4	75
235	Telomeres and immunological diseases of aging. <i>Gerontology</i> , 2010 , 56, 390-403	5.5	75
234	Thrombospondin 2 functions as an endogenous regulator of angiogenesis and inflammation in rheumatoid arthritis. <i>American Journal of Pathology</i> , 2004 , 165, 2087-98	5.8	74
233	Expression of CD39 on Activated T Cells Impairs their Survival in Older Individuals. <i>Cell Reports</i> , 2016 , 14, 1218-1231	10.6	72

232	Genetic risk factors in inflammatory abdominal aortic aneurysms: polymorphic residue 70 in the HLA-DR B1 gene as a key genetic element. <i>Journal of Vascular Surgery</i> , 1997 , 25, 356-64	3.5	72
231	Unchecked CD70 expression on T cells lowers threshold for T cell activation in rheumatoid arthritis. <i>Journal of Immunology</i> , 2007 , 179, 2609-15	5.3	72
230	Metabolic control of the scaffold protein TKS5 in tissue-invasive, proinflammatory T cells. <i>Nature Immunology</i> , 2017 , 18, 1025-1034	19.1	71
229	Stimulatory killer Ig-like receptors modulate T cell activation through DAP12-dependent and DAP12-independent mechanisms. <i>Journal of Immunology</i> , 2004 , 173, 3725-31	5.3	70
228	T-cell immunity in acute coronary syndromes. <i>Mayo Clinic Proceedings</i> , 2001 , 76, 1011-20	6.4	70
227	Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation: roles of STAT3, interleukin 6 and hydrogen peroxide. <i>Cardiovascular Research</i> , 2018 , 114, 154	1 7 -956	3 ⁷⁰
226	Molecular basis for the loss of CD28 expression in senescent T cells. <i>Journal of Biological Chemistry</i> , 2002 , 277, 46940-9	5.4	69
225	Visual manifestations in giant cell arteritis: trend over 5 decades in a population-based cohort. Journal of Rheumatology, 2015 , 42, 309-15	4.1	67
224	Selective activation of the c-Jun NH2-terminal protein kinase signaling pathway by stimulatory KIR in the absence of KARAP/DAP12 in CD4+ T cells. <i>Journal of Experimental Medicine</i> , 2003 , 197, 437-49	16.6	67
223	Signal inhibition by the dual-specific phosphatase 4 impairs T cell-dependent B-cell responses with age. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, E879-88	3 ^{11.5}	66
222	IL-7- and IL-15-mediated TCR sensitization enables T cell responses to self-antigens. <i>Journal of Immunology</i> , 2013 , 190, 1416-23	5.3	64
221	Vessel wall-embedded dendritic cells induce T-cell autoreactivity and initiate vascular inflammation. <i>Circulation Research</i> , 2008 , 102, 546-53	15.7	64
220	Is hypertension an immunologic disease?. Current Cardiology Reports, 2008, 10, 464-9	4.2	64
219	T cell recognition and killing of vascular smooth muscle cells in acute coronary syndrome. <i>Circulation Research</i> , 2006 , 98, 1168-76	15.7	64
218	Cell-based immunotherapy with suppressor CD8+ T cells in rheumatoid arthritis. <i>Journal of Immunology</i> , 2005 , 174, 7292-301	5.3	64
217	Vascular dendritic cells in giant cell arteritis. <i>Annals of the New York Academy of Sciences</i> , 2005 , 1062, 195-208	6.5	63
216	Large-Scale and Comprehensive Immune Profiling and Functional Analysis of Normal Human Aging. <i>PLoS ONE</i> , 2015 , 10, e0133627	3.7	61
215	CD8+CD45RA+CCR7+FOXP3+ T cells with immunosuppressive properties: a novel subset of inducible human regulatory T cells. <i>Journal of Immunology</i> , 2012 , 189, 2118-30	5.3	60

214	Synoviocyte-mediated expansion of inflammatory T cells in rheumatoid synovitis is dependent on CD47-thrombospondin 1 interaction. <i>Journal of Immunology</i> , 2003 , 171, 1732-40	5.3	60
213	Immune aging and rheumatoid arthritis. Rheumatic Disease Clinics of North America, 2010, 36, 297-310	2.4	59
212	Mechanisms underlying the formation of the T cell receptor repertoire in rheumatoid arthritis. <i>Immunity</i> , 1995 , 2, 597-605	32.3	59
211	Immune checkpoint dysfunction in large and medium vessel vasculitis. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2017 , 312, H1052-H1059	5.2	58
210	The microvascular niche instructs T cells in large vessel vasculitis via the VEGF-Jagged1-Notch pathway. <i>Science Translational Medicine</i> , 2017 , 9,	17.5	58
209	Functional disruption of the CD28 gene transcriptional initiator in senescent T cells. <i>Journal of Biological Chemistry</i> , 2001 , 276, 2565-70	5.4	56
208	Telomere dysfunction, autoimmunity and aging 2011 , 2, 524-37		56
207	ERK-dependent T cell receptor threshold calibration in rheumatoid arthritis. <i>Journal of Immunology</i> , 2009 , 183, 8258-67	5.3	55
206	N-myristoyltransferase deficiency impairs activation of kinase AMPK and promotes synovial tissue inflammation. <i>Nature Immunology</i> , 2019 , 20, 313-325	19.1	53
205	Pyruvate controls the checkpoint inhibitor PD-L1 and suppresses T cell immunity. <i>Journal of Clinical Investigation</i> , 2017 , 127, 2725-2738	15.9	53
204	MMP (Matrix Metalloprotease)-9-Producing Monocytes Enable T Cells to Invade the Vessel Wall and Cause Vasculitis. <i>Circulation Research</i> , 2018 , 123, 700-715	15.7	53
203	Deficient Activity of the Nuclease MRE11A Induces T Cell Aging and Promotes Arthritogenic Effector Functions in Patients with Rheumatoid Arthritis. <i>Immunity</i> , 2016 , 45, 903-916	32.3	52
202	Mechanisms shaping the nalle T cell repertoire in the elderly - thymic involution or peripheral homeostatic proliferation?. <i>Experimental Gerontology</i> , 2014 , 54, 71-4	4.5	51
201	Inflammation and cardiac outcome. Current Opinion in Infectious Diseases, 2011, 24, 259-64	5.4	51
200	Association of HLA-C3 and smoking with vasculitis in patients with rheumatoid arthritis. <i>Arthritis and Rheumatism</i> , 2006 , 54, 2776-83		51
199	Mechanisms of immunosenescence: lessons from models of accelerated immune aging. <i>Annals of the New York Academy of Sciences</i> , 2012 , 1247, 69-82	6.5	50
198	Uncoupling of T-cell effector functions by inhibitory killer immunoglobulin-like receptors. <i>Blood</i> , 2006 , 107, 4449-57	2.2	50
197	Lymphocyte generation and population homeostasis throughout life. <i>Seminars in Hematology</i> , 2017 , 54, 33-38	4	49

(2001-2005)

196	Toll-like receptors in giant cell arteritis. <i>Clinical Immunology</i> , 2005 , 115, 38-46	9	49	
195	Giant cell arteritis: immune and vascular aging as disease risk factors. <i>Arthritis Research and Therapy</i> , 2011 , 13, 231	5.7	48	
194	Diversification of the antigen-specific T cell receptor repertoire after varicella zoster vaccination. <i>Science Translational Medicine</i> , 2016 , 8, 332ra46	17.5	47	
193	The DNA Repair Nuclease MRE11A Functions as a Mitochondrial Protector and Prevents T Cell Pyroptosis and Tissue Inflammation. <i>Cell Metabolism</i> , 2019 , 30, 477-492.e6	24.6	47	
192	Distinct transcriptional control mechanisms of killer immunoglobulin-like receptors in natural killer (NK) and in T cells. <i>Journal of Biological Chemistry</i> , 2005 , 280, 24277-85	5.4	47	
191	T-cell-targeted therapies in rheumatoid arthritis. <i>Nature Clinical Practice Rheumatology</i> , 2006 , 2, 201-10		46	
190	Inherited and noninherited risk factors in rheumatoid arthritis. <i>Current Opinion in Rheumatology</i> , 1995 , 7, 206-13	5.3	46	
189	Activation of miR-21-Regulated Pathways in Immune Aging Selects against Signatures Characteristic of Memory T Cells. <i>Cell Reports</i> , 2018 , 25, 2148-2162.e5	10.6	46	
188	T cell-macrophage interactions and granuloma formation in vasculitis. <i>Frontiers in Immunology</i> , 2014 , 5, 432	8.4	45	
187	Tissue trafficking patterns of effector memory CD4+ T cells in rheumatoid arthritis. <i>Arthritis and Rheumatism</i> , 2005 , 52, 3839-49		45	
186	T-cell responses in rheumatoid arthritis: systemic abnormalities-local disease. <i>Current Opinion in Rheumatology</i> , 1999 , 11, 210-7	5.3	45	
185	DNA-dependent protein kinase catalytic subunit mediates T-cell loss in rheumatoid arthritis. <i>EMBO Molecular Medicine</i> , 2010 , 2, 415-27	12	44	
184	Defective T Memory Cell Differentiation after Varicella Zoster Vaccination in Older Individuals. <i>PLoS Pathogens</i> , 2016 , 12, e1005892	7.6	44	
183	Hypermetabolic macrophages in rheumatoid arthritis and coronary artery disease due to glycogen synthase kinase 3b inactivation. <i>Annals of the Rheumatic Diseases</i> , 2018 , 77, 1053-1062	2.4	43	
182	T cell receptor repertoire in rheumatoid arthritis. <i>International Reviews of Immunology</i> , 1998 , 17, 339-63	3 4.6	43	
181	The treatment of giant cell arteritis. <i>Reviews in Neurological Diseases</i> , 2008 , 5, 140-52		42	
180	Costimulatory pathways in rheumatoid synovitis and T-cell senescence. <i>Annals of the New York Academy of Sciences</i> , 2005 , 1062, 182-94	6.5	40	
179	Genetic similarity in inflammatory and degenerative abdominal aortic aneurysms: a study of human leukocyte antigen class II disease risk genes. <i>Journal of Vascular Surgery</i> , 2001 , 34, 84-9	3.5	40	

178	Systemic monocyte and T-cell activation in a patient with human parvovirus B19 infection. <i>Mayo Clinic Proceedings</i> , 1995 , 70, 261-5	6.4	40
177	Giant cell arteritis: new concepts in pathogenesis and implications for management. <i>American Journal of Ophthalmology</i> , 1997 , 123, 392-5	4.9	39
176	Human leukocyte antigen class II immune response genes, female gender, and cigarette smoking as risk and modulating factors in abdominal aortic aneurysms. <i>Journal of Vascular Surgery</i> , 2002 , 35, 988-9	3 ^{3.5}	39
175	Vascular damage in giant cell arteritis. <i>Autoimmunity</i> , 2009 , 42, 596-604	3	38
174	Immunometabolism in the development of rheumatoid arthritis. <i>Immunological Reviews</i> , 2020 , 294, 177	7-18.3	37
173	Tumor necrosis factor-alpha and CD80 modulate CD28 expression through a similar mechanism of T-cell receptor-independent inhibition of transcription. <i>Journal of Biological Chemistry</i> , 2004 , 279, 2913	0 ^{.5} 8 ⁴	37
172	Opposite effects of CX3CR1 receptor polymorphisms V249I and T280M on the development of acute coronary syndrome. A possible implication of fractalkine in inflammatory activation. <i>Thrombosis and Haemostasis</i> , 2005 , 93, 949-54	7	37
171	The glycolytic enzyme PFKFB3/phosphofructokinase regulates autophagy. <i>Autophagy</i> , 2014 , 10, 382-3	10.2	36
170	Statins reduce endothelial cell apoptosis via inhibition of TRAIL expression on activated CD4 T cells in acute coronary syndrome. <i>Atherosclerosis</i> , 2010 , 213, 33-9	3.1	36
169	B cells in rheumatoid synovitis. <i>Arthritis Research and Therapy</i> , 2005 , 7 Suppl 3, S9-12	5.7	36
168	Interplay of T lymphocytes and HLA-DR molecules in rheumatoid arthritis. <i>Current Opinion in Rheumatology</i> , 1993 , 5, 169-77	5.3	36
167	Adaptive Immunity Dysregulation in Acute 'Coronary Syndromes: From Cellular and Molecular Basis to Clinical Implications. <i>Journal of the American College of Cardiology</i> , 2016 , 68, 2107-2117	15.1	35
166	Regulation of miR-181a expression in T cell aging. <i>Nature Communications</i> , 2018 , 9, 3060	17.4	35
165	The immunoinhibitory PD-1/PD-L1 pathway in inflammatory blood vessel disease. <i>Journal of Leukocyte Biology</i> , 2018 , 103, 565-575	6.5	35
164	DNA damage, metabolism and aging in pro-inflammatory T cells: Rheumatoid arthritis as a model system. <i>Experimental Gerontology</i> , 2018 , 105, 118-127	4.5	35
163	Treating autoimmune disease by targeting CD8(+) T suppressor cells. <i>Expert Opinion on Biological Therapy</i> , 2009 , 9, 951-65	5.4	34
162	Giant Cell Arteritis: From Pathogenesis to Therapeutic Management. <i>Current Treatment Options in Rheumatology</i> , 2016 , 2, 126-137	1.3	33
161	Epigenetic mechanisms of age-dependent KIR2DL4 expression in T cells. <i>Journal of Leukocyte Biology</i> , 2008 , 84, 824-34	6.5	33

160	T cells in arteritis and atherosclerosis. <i>Current Opinion in Lipidology</i> , 2008 , 19, 469-77	4.4	33
159	Epigenetics of T´cell aging. <i>Journal of Leukocyte Biology</i> , 2018 , 104, 691-699	6.5	32
158	Age-Associated Failure To Adjust Type I IFN Receptor Signaling Thresholds after T Cell Activation. <i>Journal of Immunology</i> , 2015 , 195, 865-74	5.3	31
157	Dynamic immune cell accumulation during flow-induced atherogenesis in mouse carotid artery: an expanded flow cytometry method. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2012 , 32, 623-32	9.4	31
156	Rheumatoid vasculitis manifesting as intra-abdominal hemorrhage. <i>Mayo Clinic Proceedings</i> , 1995 , 70, 565-9	6.4	31
155	Glucose metabolism controls disease-specific signatures of macrophage effector functions. <i>JCI Insight</i> , 2018 , 3,	9.9	31
154	Pro-inflammatory and anti-inflammatory T cells in giant cell arteritis. <i>Joint Bone Spine</i> , 2017 , 84, 421-42	. 6 2.9	30
153	Promoter choice and translational repression determine cell type-specific cell surface density of the inhibitory receptor CD85j expressed on different hematopoietic lineages. <i>Blood</i> , 2010 , 115, 3278-8	6 ^{2.2}	30
152	Structural and functional characterization of HLA-DR molecules circulating in the serum. <i>Autoimmunity</i> , 1991 , 8, 289-96	3	29
151	PKC-epsilon and TLR4 synergistically regulate resistin-mediated inflammation in human macrophages. <i>Atherosclerosis</i> , 2017 , 259, 51-59	3.1	28
150	Redox-sensitive signaling in inflammatory T cells and in autoimmune disease. <i>Free Radical Biology and Medicine</i> , 2018 , 125, 36-43	7.8	28
149	Multisystem interactions in the pathogenesis of vasculitis. <i>Current Opinion in Rheumatology</i> , 1997 , 9, 3-11	5.3	28
148	Synoviocyte stimulation by the LFA-1-intercellular adhesion molecule-2-Ezrin-Akt pathway in rheumatoid arthritis. <i>Journal of Immunology</i> , 2008 , 180, 1971-8	5.3	28
147	Pathogenesis of Giant Cell Arteritis and Takayasu Arteritis-Similarities and Differences. <i>Current Rheumatology Reports</i> , 2020 , 22, 68	4.9	28
146	TLR-mediated induction of negative regulatory ligands on dendritic cells. <i>Journal of Molecular Medicine</i> , 2008 , 86, 443-55	5.5	27
145	Clonally expanded CD8 T cells in patients with polymyalgia rheumatica and giant cell arteritis. <i>Clinical Immunology and Immunopathology</i> , 1996 , 79, 263-70		27
144	Cytokines, growth factors and proteases in medium and large vessel vasculitis. <i>Clinical Immunology</i> , 2019 , 206, 33-41	9	26
143	Reactive nitrogen intermediates in giant cell arteritis: selective nitration of neocapillaries. <i>American Journal of Pathology</i> , 2002 , 161, 115-23	5.8	24

142	Functional domains on HLA-DR molecules: implications for the linkage of HLA-DR genes to different autoimmune diseases. <i>Clinical Immunology and Immunopathology</i> , 1994 , 70, 91-8		24
141	High-throughput sequencing insights into T-cell receptor repertoire diversity in aging. <i>Genome Medicine</i> , 2015 , 7, 117	14.4	23
140	K-RAS GTPase- and B-RAF kinase-mediated T-cell tolerance defects in rheumatoid arthritis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, E1629-37	11.5	23
139	Cytokines in giant-cell arteritis. Cleveland Clinic Journal of Medicine, 2002, 69 Suppl 2, SII91-4	2.8	23
138	The diagnosis of giant cell arteritis. <i>Reviews in Neurological Diseases</i> , 2007 , 4, 128-42		23
137	Giant-cell arteritis and polymyalgia rheumatica. New England Journal of Medicine, 2014, 371, 1653	59.2	22
136	T and B cell-dependent pathways in rheumatoid arthritis. Current Opinion in Rheumatology, 1995 , 7, 214	1-3.3	22
135	The repertoire of rheumatoid factor-producing B cells in normal subjects and patients with rheumatoid arthritis. <i>Arthritis and Rheumatism</i> , 1993 , 36, 1061-9		22
134	Determinants governing T cell receptor 胜hain pairing in repertoire formation of identical twins. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 532-540	11.5	22
133	Anti-psoriatic drug anthralin activates JNK via lipid peroxidation: mononuclear cells are more sensitive than keratinocytes. <i>Journal of Investigative Dermatology</i> , 2000 , 114, 688-92	4.3	21
132	Defects in Antiviral T Cell Responses Inflicted by Aging-Associated miR-181a Deficiency. <i>Cell Reports</i> , 2019 , 29, 2202-2216.e5	10.6	21
131	Soluble HLA-DR molecules in patients with HLA class II versus class I associated disorders. <i>Autoimmunity</i> , 1991 , 8, 281-7	3	20
130	Mapping of allospecific T-cell recognition sites encoded by the HLA-DR4 beta 1-chain. <i>Human Immunology</i> , 1989 , 24, 133-43	2.3	20
129	Cellular Signaling Pathways in Medium and Large Vessel Vasculitis. <i>Frontiers in Immunology</i> , 2020 , 11, 587089	8.4	20
128	Transcription factor networks in aged naWe CD4 T cells bias lineage differentiation. <i>Aging Cell</i> , 2019 , 18, e12957	9.9	19
127	Immune Checkpoint Function of CD85j in CD8 T Cell Differentiation and Aging. <i>Frontiers in Immunology</i> , 2017 , 8, 692	8.4	19
126	Role of increased guanosine triphosphate cyclohydrolase-1 expression and tetrahydrobiopterin levels upon T cell activation. <i>Journal of Biological Chemistry</i> , 2011 , 286, 13846-51	5.4	19
125	Selection of T cell receptor V beta elements by HLA-DR determinants predisposing to rheumatoid arthritis. <i>Arthritis and Rheumatism</i> , 1992 , 35, 990-8		18

(1995-2019)

124	CD28 Signaling Controls Metabolic Fitness of Pathogenic T Cells in Medium and Large Vessel Vasculitis. <i>Journal of the American College of Cardiology</i> , 2019 , 73, 1811-1823	15.1	17	
123	Pathomechanisms in rheumatoid arthritistime for a string theory?. <i>Journal of Clinical Investigation</i> , 2006 , 116, 869-71	15.9	17	
122	Vasculitis in rheumatoid arthritis. Current Opinion in Rheumatology, 1994, 6, 290-4	5.3	17	
121	Functional pathways regulated by microRNA networks in CD8 T-cell aging. <i>Aging Cell</i> , 2019 , 18, e12879	9.9	17	
120	Premature immunosenescence in rheumatoid arthritis. <i>Journal of Rheumatology</i> , 2002 , 29, 1141-6	4.1	17	
119	Finding Balance: T cell Regulatory Receptor Expression during Aging 2011 , 2, 398-413		16	
118	Neutrophil Extracellular Traps Induce Tissue-Invasive Monocytes in Granulomatosis With Polyangiitis. <i>Frontiers in Immunology</i> , 2019 , 10, 2617	8.4	15	
117	Haematopoietic stem and progenitor cells in rheumatoid arthritis. <i>Rheumatology</i> , 2011 , 50, 252-60	3.9	15	
116	HLA polymorphisms and T cells in rheumatoid arthritis. <i>International Reviews of Immunology</i> , 1999 , 18, 37-59	4.6	15	
115	Immunosuppression by anti-CD4 treatment in vivo. Persistence of secondary antiviral immune responses. <i>Transplantation</i> , 1989 , 47, 1034-8	1.8	15	
114	Accelerated atherosclerosis in patients with chronic inflammatory rheumatologic conditions. <i>International Journal of Clinical Rheumatology</i> , 2015 , 10, 365-381	1.5	14	
113	Insufficient deactivation of the protein tyrosine kinase lck amplifies T-cell responsiveness in acute coronary syndrome. <i>Circulation Research</i> , 2010 , 106, 769-78	15.7	14	
112	Immune cell repertoires in breast cancer patients after adjuvant chemotherapy. JCI Insight, 2020, 5,	9.9	14	
111	Immunopathologic aspects of rheumatoid arthritis: who is the conductor and who plays the immunologic instrument?. <i>Journal of rheumatology Supplement, The</i> , 2007 , 79, 9-14		14	
110	Metabolic reprogramming in memory CD4 T cell responses of old adults. <i>Clinical Immunology</i> , 2019 , 207, 58-67	9	13	
109	The metabolic signature of T cells in rheumatoid arthritis. <i>Current Opinion in Rheumatology</i> , 2020 , 32, 159-167	5.3	13	
108	Hallmarks of the aging T-cell system. FEBS Journal, 2021,	5.7	13	
107	HLA-DRB1 molecules and antigenic experience shape the repertoire of CD4 T cells. <i>Human Immunology</i> , 1995 , 44, 203-9	2.3	12	

106	The Transcription Factor TCF1 in T Cell Differentiation and Aging. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	12
105	Arachidonic acid-regulated calcium signaling in T cells from patients with rheumatoid arthritis promotes synovial inflammation. <i>Nature Communications</i> , 2021 , 12, 907	17.4	12
104	FOXO1 deficiency impairs proteostasis in aged T cells. <i>Science Advances</i> , 2020 , 6, eaba1808	14.3	11
103	Targets of immune regeneration in rheumatoid arthritis. <i>Mayo Clinic Proceedings</i> , 2014 , 89, 563-75	6.4	11
102	Succinyl-CoA Ligase Deficiency in Pro-inflammatory and Tissue-Invasive T Cells. <i>Cell Metabolism</i> , 2020 , 32, 967-980.e5	24.6	11
101	Management of Central Retinal Artery Occlusion: A Scientific Statement From the American Heart Association. <i>Stroke</i> , 2021 , 52, e282-e294	6.7	11
100	NOTCH-induced rerouting of endosomal trafficking disables regulatory T cells in vasculitis. <i>Journal of Clinical Investigation</i> , 2021 , 131,	15.9	11
99	Metabolic Fitness of T Cells in Autoimmune Disease. <i>Immunometabolism</i> , 2020 , 2,	4.1	10
98	Distinct Age-Related Epigenetic Signatures in CD4 and CD8 T Cells. <i>Frontiers in Immunology</i> , 2020 , 11, 585168	8.4	10
97	Fractalkine receptor polymorphisms V2491 and T280M as genetic risk factors for restenosis. <i>Thrombosis and Haemostasis</i> , 2005 , 94, 1251-6	7	10
96	Bi-directional modulation of T cell-dependent antibody production by prostaglandin E(2). <i>International Immunology</i> , 2002 , 14, 69-77	4.9	9
95	Selective activation of VH3A10+ rheumatoid factor producing B cells by staphylococcal enterotoxin D. <i>International Immunology</i> , 1995 , 7, 425-34	4.9	9
94	T cell receptor germline gene segments and HLA haplotypes control the length of the CDR3 of human T cell receptor beta chains. <i>Cellular Immunology</i> , 1996 , 168, 235-42	4.4	9
93	Immunosuppression by anti-CD4 treatment in vivo. Cellular and humoral responses to alloantigens. <i>Transplantation</i> , 1989 , 47, 1039-42	1.8	9
92	Treatment of chronic inflammatory diseases with biologic agents: opportunities and risks for the elderly. <i>Experimental Gerontology</i> , 2006 , 41, 1250-5	4.5	8
91	Ecto-NTPDase CD39 is a negative checkpoint that inhibits follicular helper cell generation. <i>Journal of Clinical Investigation</i> , 2020 , 130, 3422-3436	15.9	8
90	Innate and Adaptive Immunity in Giant Cell Arteritis. Frontiers in Immunology, 2020, 11, 621098	8.4	8
89	Dampened ERK signaling in hematopoietic progenitor cells in rheumatoid arthritis. <i>Clinical Immunology</i> , 2012 , 143, 73-82	9	7

(2021-1986)

88	Gene conversion. A mechanism to explain HLA-D region and disease association. <i>Annals of the New York Academy of Sciences</i> , 1986 , 475, 24-31	6.5	7
87	Serpin treatment suppresses inflammatory vascular lesions in temporal artery implants (TAI) from patients with giant cell arteritis. <i>PLoS ONE</i> , 2015 , 10, e0115482	3.7	6
86	Correlation between HLA-DR sequence polymorphisms and rheumatoid factor production. <i>Annals of the New York Academy of Sciences</i> , 1997 , 815, 353-6	6.5	6
85	Mitochondrial aspartate regulates TNF biogenesis and autoimmune tissue inflammation. <i>Nature Immunology</i> , 2021 , 22, 1551-1562	19.1	6
84	Metabolic Control of Autoimmunity and Tissue Inflammation in Rheumatoid Arthritis. <i>Frontiers in Immunology</i> , 2021 , 12, 652771	8.4	6
83	Refractory Giant Cell Arteritis Complicated by Vision Loss From Optic Atrophy and Maculopathy Associated With Pachymeningitis. <i>Journal of Neuro-Ophthalmology</i> , 2018 , 38, 17-23	2.6	5
82	A Mitochondrial Checkpoint in Autoimmune Disease. Cell Metabolism, 2018, 28, 185-186	24.6	5
81	Eosinophil-active cytokine from mononuclear cells cultured with L-tryptophan products: an unexpected consequence of endotoxin contamination. <i>Journal of Allergy and Clinical Immunology</i> , 1995 , 95, 1261-7	11.5	5
80	Geographical variations in ocular and extra-ocular manifestations in Behæt's disease. <i>European Journal of Rheumatology</i> , 2019 , 6, 199-206	1.7	5
79	Baricitinib for relapsing giant cell arteritis: a prospective open-label 52-week pilot study <i>Annals of the Rheumatic Diseases</i> , 2022 ,	2.4	5
78	The T-cell receptor V beta 6 gene usage in alloreactive T-cell responses. <i>Human Immunology</i> , 1995 , 42, 72-80	2.3	4
77	Cloning of human alloreactive T cells. <i>Methods in Enzymology</i> , 1987 , 150, 333-41	1.7	4
76	miR-181a-regulated pathways in T-cell differentiation and aging. <i>Immunity and Ageing</i> , 2021 , 18, 28	9.7	4
75	The GSK3Ecatenin-TCF1 pathway improves naive T cell activation in old adults by upregulating miR-181a. <i>Npj Aging and Mechanisms of Disease</i> , 2021 , 7, 4	5.5	4
74	Large-vessel vasculitis <i>Nature Reviews Disease Primers</i> , 2022 , 7, 93	51.1	4
73	Current ideas on the role of HLA molecules in human Diseases. <i>Clinical Immunology Newsletter</i> , 1996 , 16, 14-21		3
72	Histone deficiency and accelerated replication stress in T cell aging. <i>Journal of Clinical Investigation</i> , 2021 , 131,	15.9	3
71	Activation of mTORC1 at late endosomes misdirects T cell fate decision in older individuals. <i>Science Immunology</i> , 2021 , 6,	28	3

70	Granulomatosis with Polyangiitis (Wegener's)238-251		3
69	Age as a risk factor in vasculitis Seminars in Immunopathology, 2022, 1	12	2
68	Systemic Vasculitis in Sarcoidosis451-459		2
67	End-Stage Renal Disease and Vasculitis534-543		2
66	Cogan's Syndrome 2012 , 299-311		1
65	Cytokines in Polymyalgia and Giant Cell Arteritis. Annals of Internal Medicine, 1995, 122, 634	8	1
64	T-Cell Derived Lymphokines as Regulators of Chronic Inflammation: Potential Targets for Immunomodulation?. <i>American Journal of Therapeutics</i> , 1996 , 3, 109-114	1	1
63	Understanding T cell aging to improve anti-viral immunity. Current Opinion in Virology, 2021, 51, 127-13.	37.5	1
62	Drug-Induced Vasculitis380-391		1
61	Hemostasis and Vascular Inflammation105-114		1
60	Animal Models of Vasculitis115-125		1
59	Primary Central Nervous System Vasculitis322-331		1
58	Peripheral Vascular Surgery for Large Vessel Vasculitis558-566		1
57	Autoantibodies and Vascular Inflammation61-70		1
56	Regulatory T Cells in Autoimmune Vasculitis Frontiers in Immunology, 2022, 13, 844300	8.4	1
55	Lymphocytes T pro-inflammatoires et anti-inflammatoires dans l∃rtfite □cellules g∃ntes. <i>Revue</i> Du Rhumatisme (Edition Francaise), 2017 , 84, 94-100	0.1	O
54	The cell-surface 5'-nucleotidase CD73 defines a functional T memory cell subset that declines with age. <i>Cell Reports</i> , 2021 , 37, 109981	10.6	0
53	Immune and inflammatory mechanisms mediate cardiovascular diseases from head to toe. <i>Cardiovascular Research</i> , 2021 , 117, 2503-2505	9.9	O

52	Polymyalgia rheumatica and giant cell arteritis 2015 , 1300-1309		0
51	Vasculitis and Relapsing Polychondritis441-450		O
50	Vasculitis in the Idiopathic Inflammatory Myopathies433-440		0
49	Granulomatous Inflammation 2018 , 303-356		
48	Large and Medium Vessel Vasculitides 2014 , 1087-1103		
47	Single Organ Vasculitis 2012 , 332-342		
46	Superantigens, VH gene polymorphism, and rheumatoid factor (RF) production. <i>Annals of the New York Academy of Sciences</i> , 1997 , 815, 357-60	6.5	
45	HLA-DRB1 haplotype did not affect the medium-term results of total knee arthroplasty in patients with rheumatoid arthritis. <i>Modern Rheumatology</i> , 2004 , 14, 37-42	3.3	
44	Cellular immune responses to Borrelia burgdorferi in Lyme disease. <i>Clinical Immunology Newsletter</i> , 1991 , 11, 118-124		
43	Reduced chromatin accessibility to CD4 T cell super-enhancers encompassing susceptibility loci of rheumatoid arthritis <i>EBioMedicine</i> , 2022 , 76, 103825	8.8	
42	Occurrence of giant cell arteritissuddenly. <i>Transactions of the American Ophthalmological Society</i> , 2007 , 105, 141-4; discussion 144-5		
41	Large and Medium Vessel Vasculitides 2006 , 921-934		
40	T Cells and Vascular Inflammation50-60		
39	Neutrophils and Vascular Inflammation71-81		
38	Historical Perspectives of Vasculitis159-169		
37	Vasculitis in Systemic Lupus Erythematosus419-432		
36	Buerger's Disease (Thromboangiitis Obliterans)351-365		
35	Idiopathic Cryoglobulinemic Vasculitis312-321		

34	Microscopic Polyangiitis227-237
33	Prevention and Treatment of Medical Complications484-494
32	Approach to the Differential Diagnosis of Vasculitis170-183
31	Cardiothoracic Surgery for Takayasu's Arteritis and Giant Cell Arteritis544-557
30	Leukocyte Trafficking28-38
29	Cytokines and Vascular Inflammation82-93
28	Dendritic Cells and Vascular Inflammation39-49
27	Rheumatoid Vasculitis392-402
26	Eosinophilic Granulomatosis with Polyangiitis (ChurgBtrauss Syndrome)252-262
25	Neurologic Damage of Vasculitis521-533
24	Ophthalmic Risks and Complications Associated with the Treatment of Systemic Vasculitis495-504
23	Subglottic Stenosis of Granulomatosis with Polyangiitis (Wegener's)505-511
22	Oxidative Stress and Vascular Inflammation94-104
21	Imaging of Medium and Large Vessels (CT/MR/PET)184-193
20	Innate Immunity in Atherosclerosis136-146
19	Polyarteritis Nodosa217-226
18	Primary Cutaneous Vasculitis (Small Vessel Vasculitis)343-350
17	Sinonasal Manifestations of Granulomatosis with Polyangiitis (Wegener's)512-520

LIST OF PUBLICATIONS

16	Vascular Repair15-27
15	Vascular Development1-14
14	Adaptive Immunity in Atherosclerosis147-157
13	Beh∃t's Syndrome289-298
12	Systemic Sclerosis with Vascular Emphasis403-411
11	Cholesterol and Modifications of Cholesterol in Rheumatic Disorders473-483
10	Vasculitis as a Paraneoplastic Syndrome and Direct Tumor Invasion of Vessels460-472
9	Virus-Associated Vasculitides367-379
8	HenochBchfilein Purpura205-216
7	Arteries, Smooth Muscle Cells and Genetic Causes of Thoracic Aortic Aneurysms126-135
6	Takayasu's Arteritis276-288
5	Vasculitis and Sjgren's Syndrome412-418
4	Large-vessel vasculitides 2013 , 716-727
3	Large and Medium-Vessel Vasculitides 2020 , 1313-1334
2	Large-Vessel Vasculitides 2019 , 809-824.e1
1	HLA-DRB1 haplotype did not affect the medium-term results of total knee arthroplasty in patients with rheumatoid arthritis. <i>Modern Rheumatology</i> , 2004 , 14, 37-42