
William A Weiss

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8249192/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
2	Mutational Analysis Reveals the Origin and Therapy-Driven Evolution of Recurrent Glioma. Science, 2014, 343, 189-193.	6.0	1,147
3	A Pharmacological Map of the PI3-K Family Defines a Role for p $110\hat{1}\pm$ in Insulin Signaling. Cell, 2006, 125, 733-747.	13.5	1,074
4	Principles and Current Strategies for Targeting Autophagy for Cancer Treatment. Clinical Cancer Research, 2011, 17, 654-666.	3.2	789
5	Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature, 2012, 488, 49-56.	13.7	761
6	Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO Journal, 1997, 16, 2985-2995.	3.5	709
7	A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell, 2006, 9, 341-349.	7.7	575
8	Targeting MYCN in Neuroblastoma by BET Bromodomain Inhibition. Cancer Discovery, 2013, 3, 308-323.	7.7	549
9	Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature, 2014, 506, 445-450.	13.7	521
10	Delineation of Two Clinically and Molecularly Distinct Subgroups of Posterior Fossa Ependymoma. Cancer Cell, 2011, 20, 143-157.	7.7	494
11	Neuroblastoma and MYCN. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a014415-a014415.	2.9	480
12	Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene, 2018, 37, 1561-1575.	2.6	383
13	Subgroup-Specific Prognostic Implications of <i>TP53</i> Mutation in Medulloblastoma. Journal of Clinical Oncology, 2013, 31, 2927-2935.	0.8	381
14	Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature, 2012, 482, 529-533.	13.7	376
15	BET Bromodomain Inhibition of <i>MYC</i> -Amplified Medulloblastoma. Clinical Cancer Research, 2014, 20, 912-925.	3.2	296
16	Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncology, The, 2016, 17, 484-495.	5.1	274
17	Divergent clonal selection dominates medulloblastoma at recurrence. Nature, 2016, 529, 351-357.	13.7	266
18	Cytogenetic Prognostication Within Medulloblastoma Subgroups. Journal of Clinical Oncology, 2014, 32, 886-896.	0.8	263

#	Article	IF	CITATIONS
19	Recognizing and exploiting differences between RNAi and small-molecule inhibitors. Nature Chemical Biology, 2007, 3, 739-744.	3.9	260
20	Akt and Autophagy Cooperate to Promote Survival of Drug-Resistant Glioma. Science Signaling, 2010, 3, ra81.	1.6	253
21	Alternative splicing in cancer: implications for biology and therapy. Oncogene, 2015, 34, 1-14.	2.6	247
22	Drugging MYCN through an Allosteric Transition in Aurora Kinase A. Cancer Cell, 2014, 26, 414-427.	7.7	231
23	EGFR Phosphorylates Tumor-Derived EGFRvIII Driving STAT3/5 and Progression in Glioblastoma. Cancer Cell, 2013, 24, 438-449.	7.7	219
24	Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro-Oncology, 2017, 19, now101.	0.6	217
25	Non-Stem Cell Origin for Oligodendroglioma. Cancer Cell, 2010, 18, 669-682.	7.7	211
26	The prenatal origins of cancer. Nature Reviews Cancer, 2014, 14, 277-289.	12.8	201
27	Asymmetry-Defective Oligodendrocyte Progenitors Are Glioma Precursors. Cancer Cell, 2011, 20, 328-340.	7.7	200
28	A Dual Phosphoinositide-3-Kinase α/mTOR Inhibitor Cooperates with Blockade of Epidermal Growth Factor Receptor in <i>PTEN</i> -Mutant Glioma. Cancer Research, 2007, 67, 7960-7965.	0.4	199
29	Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathologica, 2011, 122, 231-240.	3.9	195
30	Structure-guided development of affinity probes for tyrosine kinases using chemical genetics. Nature Chemical Biology, 2007, 3, 229-238.	3.9	190
31	Inhibition of Phosphatidylinositol 3-Kinase Destabilizes Mycn Protein and Blocks Malignant Progression in Neuroblastoma. Cancer Research, 2006, 66, 8139-8146.	0.4	186
32	miR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN-amplified neuroblastoma. Nature Medicine, 2010, 16, 1134-1140.	15.2	180
33	Myc proteins as therapeutic targets. Oncogene, 2010, 29, 1249-1259.	2.6	177
34	Distinct Neural Stem Cell Populations Give Rise to Disparate Brain Tumors in Response to N-MYC. Cancer Cell, 2012, 21, 601-613.	7.7	177
35	Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathologica, 2013, 125, 373-384.	3.9	169
36	Combined MYC and P53 Defects Emerge at Medulloblastoma Relapse and Define Rapidly Progressive, Therapeutically Targetable Disease. Cancer Cell, 2015, 27, 72-84.	7.7	165

#	Article	IF	CITATIONS
37	EGFR Signals to mTOR Through PKC and Independently of Akt in Glioma. Science Signaling, 2009, 2, ra4.	1.6	153
38	Epigenome analyses using BAC microarrays identify evolutionary conservation of tissue-specific methylation of SHANK3. Nature Genetics, 2005, 37, 645-651.	9.4	148
39	Pleiotropic role for <i>MYCN</i> in medulloblastoma. Genes and Development, 2010, 24, 1059-1072.	2.7	146
40	TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathologica, 2013, 126, 917-929.	3.9	146
41	Targeted Therapy for <i>BRAFV600E</i> Malignant Astrocytoma. Clinical Cancer Research, 2011, 17, 7595-7604.	3.2	143
42	Inhibition of PI3K/mTOR pathways in glioblastoma and implications for combination therapy with temozolomide. Neuro-Oncology, 2011, 13, 384-392.	0.6	139
43	A Kinase Inhibitor Targeted to mTORC1 Drives Regression in Glioblastoma. Cancer Cell, 2017, 31, 424-435.	7.7	138
44	Mechanisms of embryonal tumor initiation: Distinct roles for MycN expression and MYCN amplification. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12664-12669.	3.3	137
45	CRISPR-Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2. Journal of Clinical Investigation, 2017, 128, 446-462.	3.9	117
46	Pediatric low-grade gliomas: next biologically driven steps. Neuro-Oncology, 2018, 20, 160-173.	0.6	116
47	PI3K Signaling in Glioma—Animal Models and Therapeutic Challenges. Brain Pathology, 2009, 19, 112-120.	2.1	110
48	Involvement of RhoA, ROCK I and myosin II in inverted orientation of epithelial polarity. EMBO Reports, 2008, 9, 923-929.	2.0	106
49	Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nature Medicine, 2022, 28, 333-344.	15.2	105
50	Assessment and prognostic significance of the epidermal growth factor receptor vIII mutation in glioblastoma patients treated with concurrent and adjuvant temozolomide radiochemotherapy. International Journal of Cancer, 2014, 134, 2437-2447.	2.3	100
51	Single-cell RNA-Seq of follicular lymphoma reveals malignant B-cell types and coexpression of T-cell immune checkpoints. Blood, 2019, 133, 1119-1129.	0.6	99
52	Effects of MYCN Antisense Oligonucleotide Administration on Tumorigenesis in a Murine Model of Neuroblastoma. Journal of the National Cancer Institute, 2003, 95, 1394-1403.	3.0	96
53	Childhood tumors of the nervous system as disorders of normal development. Current Opinion in Pediatrics, 2006, 18, 634-638.	1.0	92
54	Cyclic GMP-dependent protein kinase II inhibits cell proliferation, Sox9 expression and Akt phosphorylation in human glioma cell lines. Oncogene, 2009, 28, 3121-3131.	2.6	87

#	Article	IF	CITATIONS
55	PTEN promoter methylation and activation of the PI3K/Akt/mTOR pathway in pediatric gliomas and influence on clinical outcome. Neuro-Oncology, 2012, 14, 1146-1152.	0.6	85
56	Cooperative interactions of BRAF ^{V600E} kinase and <i>CDKN2A</i> locus deficiency in pediatric malignant astrocytoma as a basis for rational therapy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8710-8715.	3.3	77
57	Paracrine Signaling Through MYCN Enhances Tumor-Vascular Interactions in Neuroblastoma. Science Translational Medicine, 2012, 4, 115ra3.	5.8	76
58	EAG2 potassium channel with evolutionarily conserved function as a brain tumor target. Nature Neuroscience, 2015, 18, 1236-1246.	7.1	74
59	Whole-Body <i>Sleeping Beauty</i> Mutagenesis Can Cause Penetrant Leukemia/Lymphoma and Rare High-Grade Glioma without Associated Embryonic Lethality. Cancer Research, 2009, 69, 8429-8437.	0.4	72
60	Combined BET bromodomain and CDK2 inhibition in MYC-driven medulloblastoma. Oncogene, 2018, 37, 2850-2862.	2.6	71
61	STAT3 Blockade Inhibits Radiation-Induced Malignant Progression in Glioma. Cancer Research, 2015, 75, 4302-4311.	0.4	70
62	Voltage-gated potassium channel EAG2 controls mitotic entry and tumor growth in medulloblastoma via regulating cell volume dynamics. Genes and Development, 2012, 26, 1780-1796.	2.7	68
63	Neuropathology of genetically engineered mice: consensus report and recommendations from an international forum. Oncogene, 2002, 21, 7453-7463.	2.6	66
64	Characterization of structurally distinct, isoform-selective phosphoinositide 3′-kinase inhibitors in combination with radiation in the treatment of glioblastoma. Molecular Cancer Therapeutics, 2008, 7, 841-850.	1.9	66
65	Cooperation of the HDAC inhibitor vorinostat and radiation in metastatic neuroblastoma: Efficacy and underlying mechanisms. Cancer Letters, 2011, 306, 223-229.	3.2	66
66	Biological and clinical heterogeneity of MYCN-amplified medulloblastoma. Acta Neuropathologica, 2012, 123, 515-527.	3.9	66
67	Shared Epigenetic Mechanisms in Human and Mouse Gliomas Inactivate Expression of the Growth Suppressor SLC5A8. Cancer Research, 2005, 65, 3617-3623.	0.4	63
68	Vorinostat Increases Expression of Functional Norepinephrine Transporter in Neuroblastoma <i>In Vitro</i> and <i>In Vivo</i> Model Systems. Clinical Cancer Research, 2011, 17, 2339-2349.	3.2	61
69	Radiation dose estimation using preclinical imaging with â€metaiodobenzylguanidine (MIBC) PET. Medical Physics, 2010, 37, 4861-4867.	1.6	60
70	Cross-activating c-Met/l²1 integrin complex drives metastasis and invasive resistance in cancer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8685-E8694.	3.3	60
71	Dual HDAC and PI3K Inhibition Abrogates NFκB- and FOXM1-Mediated DNA Damage Response to Radiosensitize Pediatric High-Grade Gliomas. Cancer Research, 2018, 78, 4007-4021.	0.4	60
72	Neural Stem Cell Biology May Be Well Suited for Improving Brain Tumor Therapies. Cancer Journal (Sudbury, Mass), 2003, 9, 189-204.	1.0	58

#	Article	IF	CITATIONS
73	Malignant Progression and Blockade of Angiogenesis in a Murine Transgenic Model of Neuroblastoma. Cancer Research, 2007, 67, 9435-9442.	0.4	58
74	Chemotherapy-Induced Apoptosis in a Transgenic Model of Neuroblastoma Proceeds Through p53 Induction. Neoplasia, 2008, 10, 1268-IN34.	2.3	57
75	Th-MYCN Mice with Caspase-8 Deficiency Develop Advanced Neuroblastoma with Bone Marrow Metastasis. Cancer Research, 2013, 73, 4086-4097.	0.4	57
76	Engineering Genetic Predisposition in Human Neuroepithelial Stem Cells Recapitulates Medulloblastoma Tumorigenesis. Cell Stem Cell, 2019, 25, 433-446.e7.	5.2	56
77	Kinetics of Inhibitor Cycling Underlie Therapeutic Disparities between EGFR-Driven Lung and Brain Cancers. Cancer Discovery, 2012, 2, 450-457.	7.7	53
78	Glioblastoma cellular cross-talk converges on NF-κB to attenuate EGFR inhibitor sensitivity. Genes and Development, 2017, 31, 1212-1227.	2.7	53
79	Genetically engineered murine models – Contribution to our understanding of the genetics, molecular pathology and therapeutic targeting of neuroblastoma. Seminars in Cancer Biology, 2011, 21, 245-255.	4.3	48
80	Autophagy and Akt promote survival in glioma. Autophagy, 2011, 7, 536-538.	4.3	47
81	EGFR Cooperates with EGFRvIII to Recruit Macrophages in Glioblastoma. Cancer Research, 2018, 78, 6785-6794.	0.4	44
82	Inhibition of mTOR-kinase destabilizes MYCN and is a potential therapy for MYCN-dependent tumors. Oncotarget, 2016, 7, 57525-57544.	0.8	42
83	RNA interference against a glioma-derived allele of EGFR induces blockade at G2M. Oncogene, 2005, 24, 829-837.	2.6	41
84	Spinal Myxopapillary Ependymomas Demonstrate a Warburg Phenotype. Clinical Cancer Research, 2015, 21, 3750-3758.	3.2	40
85	BRAF Status in Personalizing Treatment Approaches for Pediatric Gliomas. Clinical Cancer Research, 2016, 22, 5312-5321.	3.2	39
86	Glial Progenitors as Targets for Transformation in Glioma. Advances in Cancer Research, 2014, 121, 1-65.	1.9	38
87	Using a preclinical mouse model of high-grade astrocytoma to optimize p53 restoration therapy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1480-9.	3.3	37
88	IKK/NF-κB signaling contributes to glioblastoma stem cell maintenance. Oncotarget, 2016, 7, 69173-69187.	0.8	37
89	Intratumoral Therapy of Glioblastoma Multiforme Using Genetically Engineered Transferrin for Drug Delivery. Cancer Research, 2010, 70, 4520-4527.	0.4	36
90	Nordihydroguaiaretic acid inhibits insulin-like growth factor signaling, growth, and survival in human neuroblastoma cells. Journal of Cellular Biochemistry, 2007, 102, 1529-1541.	1.2	34

#	Article	IF	CITATIONS
91	Dual blockade of lipid and cyclin-dependent kinases induces synthetic lethality in malignant glioma. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12722-12727.	3.3	34
92	Inhibiting 4EBP1 in Glioblastoma. Clinical Cancer Research, 2018, 24, 14-21.	3.2	34
93	Isoform Specific Inhibitors of PI3 Kinase in Glioma. Cell Cycle, 2006, 5, 2301-2305.	1.3	33
94	Survival advantage combining a BRAF inhibitor and radiation in BRAF V600E-mutant glioma. Journal of Neuro-Oncology, 2016, 126, 385-393.	1.4	31
95	Combined BRAFV600E and MEK blockade for BRAFV600E-mutant gliomas. Journal of Neuro-Oncology, 2017, 131, 495-505.	1.4	29
96	Chemical Genetic Blockade of Transformation Reveals Dependence on Aberrant Oncogenic Signaling. Current Biology, 2002, 12, 1386-1394.	1.8	28
97	Subgroup-specific alternative splicing in medulloblastoma. Acta Neuropathologica, 2012, 123, 485-499.	3.9	28
98	Expression Quantitative Trait Loci and Receptor Pharmacology Implicate Arg1 and the GABA-A Receptor as Therapeutic Targets in Neuroblastoma. Cell Reports, 2014, 9, 1034-1046.	2.9	28
99	BMPs oppose Math1 in cerebellar development and in medulloblastoma: Figure 1 Genes and Development, 2008, 22, 693-699.	2.7	27
100	Rational design of a monomeric and photostable far-red fluorescent protein for fluorescence imaging <i>in vivo</i> . Protein Science, 2016, 25, 308-315.	3.1	27
101	EGFR blockade prevents glioma escape from BRAFV600E targeted therapy. Oncotarget, 2015, 6, 21993-22005.	0.8	27
102	Drugging the "Undruggable―MYCN Oncogenic Transcription Factor: Overcoming Previous Obstacles to Impact Childhood Cancers. Cancer Research, 2021, 81, 1627-1632.	0.4	25
103	Acquired resistance to BRAF inhibition in BRAFV600E mutant gliomas. Oncotarget, 2017, 8, 583-595.	0.8	24
104	Blockade of Glioma Proliferation Through Allosteric Inhibition of JAK2. Science Signaling, 2013, 6, ra55.	1.6	23
105	Radiotherapy Followed by Aurora Kinase Inhibition Targets Tumor-Propagating Cells in Human Glioblastoma. Molecular Cancer Therapeutics, 2015, 14, 419-428.	1.9	23
106	Metastatic group 3 medulloblastoma is driven by PRUNE1 targeting NME1–TGF-β–OTX2–SNAIL via PTEN inhibition. Brain, 2018, 141, 1300-1319.	3.7	22
107	PCDH10 is a candidate tumour suppressor gene in medulloblastoma. Child's Nervous System, 2011, 27, 1243-1249.	0.6	21
108	Genetics of brain tumors. Current Opinion in Pediatrics, 2000, 12, 543-548.	1.0	20

#	Article	IF	CITATIONS
109	Downregulation of MYCN through PI3K Inhibition in Mouse Models of Pediatric Neural Cancer. Frontiers in Oncology, 2015, 5, 111.	1.3	20
110	The Genetics of Splicing in Neuroblastoma. Cancer Discovery, 2015, 5, 380-395.	7.7	20
111	A CK1α Activator Penetrates the Brain and Shows Efficacy Against Drug-resistant Metastatic Medulloblastoma. Clinical Cancer Research, 2019, 25, 1379-1388.	3.2	20
112	Matching mice to malignancy: molecular subgroups and models of medulloblastoma. Child's Nervous System, 2012, 28, 521-532.	0.6	19
113	Inhibition of WNT signaling attenuates self-renewal of SHH-subgroup medulloblastoma. Oncogene, 2017, 36, 6306-6314.	2.6	19
114	An oncolytic measles virus–sensitive Group 3 medulloblastoma model in immune-competent mice. Neuro-Oncology, 2018, 20, 1606-1615.	0.6	19
115	It Takes Two to Tango: Dual Inhibition of PI3K and MAPK in Rhabdomyosarcoma. Clinical Cancer Research, 2013, 19, 5811-5813.	3.2	17
116	Depatuxizumab Mafodotin (ABT-414)-induced Glioblastoma Cell Death Requires EGFR Overexpression, but not EGFRY1068 Phosphorylation. Molecular Cancer Therapeutics, 2020, 19, 1328-1339.	1.9	17
117	What underlies the diversity of brain tumors?. Cancer and Metastasis Reviews, 2013, 32, 5-24.	2.7	16
118	Fundamental differences in promoter CpG island DNA hypermethylation between human cancer and genetically engineered mouse models of cancer. Epigenetics, 2013, 8, 1254-1260.	1.3	16
119	Antisecretory Factor–Mediated Inhibition of Cell Volume Dynamics Produces Antitumor Activity in Glioblastoma. Molecular Cancer Research, 2018, 16, 777-790.	1.5	16
120	Cholesterol: An Achilles' Heel for Glioblastoma?. Cancer Cell, 2016, 30, 653-654.	7.7	14
121	Brain Tumors in S100β-v-erbB Transgenic Rats. Journal of Neuropathology and Experimental Neurology, 2006, 65, 1111-1117.	0.9	13
122	Adenovirusâ€nediated <i>hPNPase</i> ^{<i>oldâ€35</i>} gene transfer as a therapeutic strategy for neuroblastoma. Journal of Cellular Physiology, 2009, 219, 707-715.	2.0	13
123	Imaging-based chemical screening reveals activity-dependent neural differentiation of pluripotent stem cells. ELife, 2013, 2, e00508.	2.8	13
124	A head holder for magnetic resonance imaging that allows the stereotaxic alignment of spontaneously occurring intracranial mouse tumors. Journal of Neuroscience Methods, 2002, 116, 1-7.	1.3	11
125	Mechanisms of Resistance to EGFR Inhibition Reveal Metabolic Vulnerabilities in Human GBM. Molecular Cancer Therapeutics, 2019, 18, 1565-1576.	1.9	11
126	High-Throughput Molecular and Histopathologic Profiling of Tumor Tissue in a Novel Transplantable Model of Murine Neuroblastoma: New Tools for Pediatric Drug Discovery. Cancer Investigation, 2012, 30, 343-363.	0.6	9

#	Article	IF	CITATIONS
127	The Side Story of Stem-like Glioma Cells. Cell Stem Cell, 2009, 4, 191-192.	5.2	8
128	Betacellulin drives therapy resistance in glioblastoma. Neuro-Oncology, 2020, 22, 457-469.	0.6	8
129	Translating Basic Science Discoveries into Improved Outcomes for Glioblastoma. Clinical Cancer Research, 2020, 26, 2457-2460.	3.2	8
130	Recapitulating human cancer in a mouse. Nature Biotechnology, 2013, 31, 392-395.	9.4	7
131	G34, Another Connection between MYCN and a Pediatric Tumor. Cancer Discovery, 2013, 3, 484-486.	7.7	7
132	When Deletions Gain Functions: Commandeering Epigenetic Mechanisms. Cancer Cell, 2014, 26, 160-161.	7.7	6
133	Utility of Human-Derived Models for Glioblastoma. Cancer Discovery, 2020, 10, 907-909.	7.7	6
134	A new "angle―on kinase inhibitor design: Prioritizing amphosteric activity above kinase inhibition. Molecular and Cellular Oncology, 2015, 2, e975641.	0.3	5
135	Starvation favors glioma stem cells. Nature Neuroscience, 2013, 16, 1359-1361.	7.1	4
136	Neuroblastoma Metastases: Leveraging the Avian Neural Crest. Cancer Cell, 2017, 32, 395-397.	7.7	4
137	Chemical genetic approaches to the development of cancer therapeutics. Current Opinion in Genetics and Development, 2006, 16, 85-91.	1.5	3
138	Conversations on mutism: risk stratification for cerebellar mutism based on medulloblastoma subtype. Neuro-Oncology, 2020, 22, 175-176.	0.6	2
139	Can mouse models for brain tumors inform treatment in pediatric patients?. Seminars in Cancer Biology, 2004, 14, 71-77.	4.3	1
140	Nuclear tetraspanin 8 promotes breast cancer progression. Cell Research, 2022, 32, 511-512.	5.7	1
141	A translational end-run for a rare, genetically enigmatic tumor. Cancer Biology and Therapy, 2009, 8, 2396-2397.	1.5	0
142	A SHHecret target of relapsed medulloblastoma: Astrocytes. Journal of Experimental Medicine, 2021, 218, .	4.2	0
143	All eyes on a phosphatase in glioma stem cells. Journal of Experimental Medicine, 2021, 218, .	4.2	0