List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8249060/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proposed minimum reporting standards for chemical analysis. Metabolomics, 2007, 3, 211-221.	1.4	3,589
2	Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 2011, 6, 1060-1083.	5.5	2,236
3	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	7.3	2,153
4	Metabolomics by numbers: acquiring and understanding global metabolite data. Trends in Biotechnology, 2004, 22, 245-252.	4.9	1,156
5	Identification of Novel Genes in Arabidopsis Involved in Secondary Cell Wall Formation Using Expression Profiling and Reverse Genetics. Plant Cell, 2005, 17, 2281-2295.	3.1	715
6	Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chemical Society Reviews, 2011, 40, 387-426.	18.7	689
7	A tutorial review: Metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding. Analytica Chimica Acta, 2015, 879, 10-23.	2.6	618
8	Discrimination of Bacteria Using Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2004, 76, 40-47.	3.2	608
9	Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst, The, 2006, 131, 875.	1.7	544
10	Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics, 2018, 14, 72.	1.4	517
11	Metabolomics: Current technologies and future trends. Proteomics, 2006, 6, 4716-4723.	1.3	471
12	Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics, 2013, 9, 44-66.	1.4	452
13	On Splitting Training and Validation Set: A Comparative Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the Generalization Performance of Supervised Learning. Journal of Analysis and Testing, 2018, 2, 249-262.	2.5	423
14	The metabolomics standards initiative (MSI). Metabolomics, 2007, 3, 175-178.	1.4	396
15	Fingerprinting food: current technologies for the detection of food adulteration and contamination. Chemical Society Reviews, 2012, 41, 5706.	18.7	362
16	Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology (United Kingdom), 1998, 144, 1157-1170.	0.7	361
17	Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics, 2007, 8, 1243-1266.	0.6	361
18	Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics, 2007, 3,	1.4	361

, 231-241.

#	Article	IF	CITATIONS
19	Characterisation and identification of bacteria using SERS. Chemical Society Reviews, 2008, 37, 931.	18.7	352
20	Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. Plant Journal, 2007, 52, 1154-1168.	2.8	338
21	The role of reporting standards for metabolite annotation and identification in metabolomic studies. GigaScience, 2013, 2, 13.	3.3	333
22	The Metabolomics Standards Initiative. Nature Biotechnology, 2007, 25, 846-848.	9.4	328
23	Global Metabolic Profiling of <i>Escherichia coli</i> Cultures:  an Evaluation of Methods for Quenching and Extraction of Intracellular Metabolites. Analytical Chemistry, 2008, 80, 2939-2948.	3.2	293
24	Detection of the Dipicolinic Acid Biomarker inBacillusSpores Using Curie-Point Pyrolysis Mass Spectrometry and Fourier Transform Infrared Spectroscopy. Analytical Chemistry, 2000, 72, 119-127.	3.2	292
25	The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Archives of Toxicology, 2011, 85, 5-17.	1.9	289
26	A proposed framework for the description of plant metabolomics experiments and their results. Nature Biotechnology, 2004, 22, 1601-1606.	9.4	283
27	Rapid and Quantitative Detection of the Microbial Spoilage of Meat by Fourier Transform Infrared Spectroscopy and Machine Learning. Applied and Environmental Microbiology, 2002, 68, 2822-2828.	1.4	281
28	Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry. Analytica Chimica Acta, 1997, 348, 71-86.	2.6	259
29	Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. Analyst, The, 2009, 134, 1322.	1.7	240
30	Surface-Enhanced Raman Spectroscopy for Bacterial Discrimination Utilizing a Scanning Electron Microscope with a Raman Spectroscopy Interface. Analytical Chemistry, 2004, 76, 5198-5202.	3.2	231
31	Surface-enhanced Raman scattering for the rapid discrimination of bacteria. Faraday Discussions, 2006, 132, 281-292.	1.6	222
32	Metabolomics of a Superorganism. Journal of Nutrition, 2007, 137, 259S-266S.	1.3	220
33	Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry, 2003, 62, 919-928.	1.4	210
34	An introduction to liquid chromatography–mass spectrometry instrumentation applied in plant metabolomic analyses. Phytochemical Analysis, 2010, 21, 33-47.	1.2	207
35	Molecular phenotyping of a UK population: defining the human serum metabolome. Metabolomics, 2015, 11, 9-26.	1.4	202
36	Metabolomic technologies and their application to the study of plants and plant–host interactions. Physiologia Plantarum, 2008, 132, 117-135.	2.6	201

#	Article	IF	CITATIONS
37	New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition. Nature, 2015, 522, 497-501.	13.7	197
38	Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks. FEMS Microbiology Letters, 1996, 140, 233-239.	0.7	187
39	Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nature Protocols, 2011, 6, 1241-1249.	5.5	186
40	Rapid and quantitative detection of the microbial spoilage of muscle foods: current status and future trends. Trends in Food Science and Technology, 2001, 12, 414-424.	7.8	185
41	Shining Light on the Microbial World. Advances in Applied Microbiology, 2010, 70, 153-186.	1.3	185
42	Point-and-shoot: rapid quantitative detection methods for on-site food fraud analysis – moving out of the laboratory and into the food supply chain. Analytical Methods, 2015, 7, 9401-9414.	1.3	183
43	Rapid Differentiation of Closely Related <i>Candida</i> Species and Strains by Pyrolysis-Mass Spectrometry and Fourier Transform-Infrared Spectroscopy. Journal of Clinical Microbiology, 1998, 36, 367-374.	1.8	181
44	Exhaled breath analysis: a review of â€~breath-taking' methods for off-line analysis. Metabolomics, 2017, 13, 110.	1.4	178
45	Ultrasensitive Colorimetric Detection of Murine Norovirus Using NanoZyme Aptasensor. Analytical Chemistry, 2019, 91, 3270-3276.	3.2	174
46	Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived metabolomic datasets. Bioinformatics, 2011, 27, 1108-1112.	1.8	173
47	SERS Detection of Multiple Antimicrobial-Resistant Pathogens Using Nanosensors. Analytical Chemistry, 2017, 89, 12666-12673.	3.2	170
48	Development and Performance of a Gas Chromatographyâ^'Time-of-Flight Mass Spectrometry Analysis for Large-Scale Nontargeted Metabolomic Studies of Human Serum. Analytical Chemistry, 2009, 81, 7038-7046.	3.2	168
49	UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis. Nature, 2015, 522, 502-506.	13.7	168
50	Systems biology guided by XCMS Online metabolomics. Nature Methods, 2017, 14, 461-462.	9.0	168
51	llluminating disease and enlightening biomedicine: Raman spectroscopy as a diagnostic tool. Analyst, The, 2013, 138, 3871.	1.7	163
52	Clinical applications of infrared and Raman spectroscopy: state of play and future challenges. Analyst, The, 2018, 143, 1735-1757.	1.7	163
53	An automated Design-Build-Test-Learn pipeline for enhanced microbial production of fine chemicals. Communications Biology, 2018, 1, 66.	2.0	159
54	Influence of Missing Values Substitutes on Multivariate Analysis of Metabolomics Data. Metabolites, 2014, 4, 433-452.	1.3	158

#	Article	IF	CITATIONS
55	Rapid Quantitative Assessment of the Adulteration of Virgin Olive Oils with Hazelnut Oils Using Raman Spectroscopy and Chemometrics. Journal of Agricultural and Food Chemistry, 2003, 51, 6145-6150.	2.4	153
56	A metabolome pipeline: from concept to data to knowledge. Metabolomics, 2005, 1, 39-51.	1.4	152
57	Genetic algorithm optimization for pre-processing and variable selection of spectroscopic data. Bioinformatics, 2005, 21, 860-868.	1.8	149
58	¹ H NMR, GCâ^'El-TOFMS, and Data Set Correlation for Fruit Metabolomics: Application to Spatial Metabolite Analysis in Melon. Analytical Chemistry, 2009, 81, 2884-2894.	3.2	147
59	Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery. Drug Discovery Today, 2014, 19, 171-182.	3.2	140
60	COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access. Metabolomics, 2015, 11, 1587-1597.	1.4	140
61	Chemical and bioanalytical applications of surface enhanced Raman scattering spectroscopy. Chemical Society Reviews, 2008, 37, 883.	18.7	136
62	Metabolomic analysis of the interaction between plants and herbivores. Metabolomics, 2009, 5, 150-161.	1.4	135
63	Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS. Chemical Science, 2014, 5, 1030-1040.	3.7	134
64	Effective Quenching Processes for Physiologically Valid Metabolite Profiling of Suspension Cultured Mammalian Cells. Analytical Chemistry, 2009, 81, 174-183.	3.2	132
65	Taking your breath away: metabolomics breathes life in to personalized medicine. Trends in Biotechnology, 2014, 32, 538-548.	4.9	132
66	Characterization of Microorganisms Using UV Resonance Raman Spectroscopy and Chemometrics. Analytical Chemistry, 2004, 76, 585-591.	3.2	131
67	Portable, Quantitative Detection of <i>Bacillus</i> Bacterial Spores Using Surface-Enhanced Raman Scattering. Analytical Chemistry, 2013, 85, 3297-3302.	3.2	130
68	Metabolic profiling using direct infusion electrospray ionisation mass spectrometry for the characterisation of olive oils. Analyst, The, 2002, 127, 1457-1462.	1.7	127
69	Recent developments in quantitative SERS: Moving towards absolute quantification. TrAC - Trends in Analytical Chemistry, 2018, 102, 359-368.	5.8	127
70	Chemometric discrimination of unfractionated plant extracts analyzed by electrospray mass spectrometry. Phytochemistry, 2003, 62, 859-863.	1.4	126
71	Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS). Analyst, The, 2008, 133, 1505.	1.7	126
72	Fourier transform infrared spectroscopy and multivariate analysis for the detection and quantification of different milk species. Journal of Dairy Science, 2010, 93, 5651-5660.	1.4	126

#	Article	IF	CITATIONS
73	Quantitative Analysis of the Banned Food Dye Sudan-1 Using Surface Enhanced Raman Scattering with Multivariate Chemometrics. Journal of Physical Chemistry C, 2010, 114, 7285-7290.	1.5	126
74	Flow infusion electrospray ionisation mass spectrometry for high throughput, non-targeted metabolite fingerprinting: a review. Metabolomics, 2013, 9, 4-29.	1.4	124
75	Rapid assessment of the adulteration of virgin olive oils by other seed oils using pyrolysis mass spectrometry and artificial neural networks. Journal of the Science of Food and Agriculture, 1993, 63, 297-307.	1.7	120
76	Progress toward the Rapid Nondestructive Assessment of the Floral Origin of European Honey Using Dispersive Raman Spectroscopy. Applied Spectroscopy, 2002, 56, 521-527.	1.2	120
77	Inter-laboratory reproducibility of fast gas chromatography–electron impact–time of flight mass spectrometry (GC–El–TOF/MS) based plant metabolomics. Metabolomics, 2009, 5, 479-496.	1.4	120
78	Rapid and quantitative detection of the microbial spoilage of beef by Fourier transform infrared spectroscopy and machine learning. Analytica Chimica Acta, 2004, 514, 193-201.	2.6	119
79	Non-invasive metabolomic analysis of breath using differential mobility spectrometry in patients with chronic obstructive pulmonary disease and healthy smokers. Analyst, The, 2010, 135, 315.	1.7	119
80	ls Serum or Plasma More Appropriate for Intersubject Comparisons in Metabolomic Studies? An Assessment in Patients with Small-Cell Lung Cancer. Analytical Chemistry, 2011, 83, 6689-6697.	3.2	119
81	Electronic cigarette exposure triggers neutrophil inflammatory responses. Respiratory Research, 2016, 17, 56.	1.4	117
82	Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol phospholipids are major discriminatory nonâ€polar metabolites in responses by Brachypodium distachyon to challenge by Magnaporthe grisea. Plant Journal, 2006, 46, 351-368.	2.8	115
83	A comparison of Raman and FT-IR spectroscopy for the prediction of meat spoilage. Food Control, 2013, 29, 461-470.	2.8	115
84	Surface-Enhanced Raman Scattering from Intracellular and Extracellular Bacterial Locations. Analytical Chemistry, 2008, 80, 6741-6746.	3.2	114
85	Untargeted Metabolic Profiling Identifies Altered Serum Metabolites of Type 2 Diabetes Mellitus in a Prospective, Nested Case Control Study. Clinical Chemistry, 2015, 61, 487-497.	1.5	113
86	Pyrolysis mass spectrometry and its applications in biotechnology. Current Opinion in Biotechnology, 1996, 7, 20-28.	3.3	112
87	Absolute Quantification of Uric Acid in Human Urine Using Surface Enhanced Raman Scattering with the Standard Addition Method. Analytical Chemistry, 2017, 89, 2472-2477.	3.2	112
88	Extensive metabolic crossâ€ŧalk in melon fruit revealed by spatial and developmental combinatorial metabolomics. New Phytologist, 2011, 190, 683-696.	3.5	111
89	Functional Genomics via Metabolic Footprinting: Monitoring Metabolite Secretion byEscherichia coliTryptophan Metabolism Mutants Using $FTa\in$ ^{(IIR} and Direct Injection Electrospray Mass Spectrometry. Comparative and Functional Genomics, 2003, 4, 376-391.	2.0	110
90	Metabolite profiling of recombinant CHO cells: Designing tailored feeding regimes that enhance recombinant antibody production. Biotechnology and Bioengineering, 2011, 108, 3025-3031.	1.7	110

#	Article	IF	CITATIONS
91	Variable Selection in Discriminant Partial Least-Squares Analysis. Analytical Chemistry, 1998, 70, 4126-4133.	3.2	109
92	Rapid identification of closely related muscle foods by vibrational spectroscopy and machine learning. Analyst, The, 2005, 130, 1648.	1.7	109
93	Meat, the metabolites: an integrated metabolite profiling and lipidomics approach for the detection of the adulteration of beef with pork. Analyst, The, 2016, 141, 2155-2164.	1.7	106
94	Raman Activated Cell Ejection for Isolation of Single Cells. Analytical Chemistry, 2013, 85, 10697-10701.	3.2	105
95	Metabolic footprinting as a tool for discriminating between brewing yeasts. Yeast, 2007, 24, 667-679.	0.8	103
96	Discovery of Volatile Biomarkers of Parkinson's Disease from Sebum. ACS Central Science, 2019, 5, 599-606.	5.3	100
97	Metabolomics for the masses: The future of metabolomics in a personalized world. European Journal of Molecular and Clinical Medicine, 2017, 3, 294.	0.5	99
98	Rapid and quantitative detection of the microbial spoilage in milk using Fourier transform infrared spectroscopy and chemometrics. Analyst, The, 2008, 133, 1424.	1.7	98
99	Flow-injection electrospray ionization mass spectrometry of crude cell extracts for high-throughput bacterial identification. Journal of the American Society for Mass Spectrometry, 2002, 13, 118-128.	1.2	97
100	Data standards can boost metabolomics research, and if there is a will, there is a way. Metabolomics, 2016, 12, 14.	1.4	97
101	Exhaled Volatile Organic Compounds of Infection: A Systematic Review. ACS Infectious Diseases, 2017, 3, 695-710.	1.8	96
102	Rapid and Quantitative Analysis of the Pyrolysis Mass Spectra of Complex Binary and Tertiary Mixtures Using Multivariate Calibration and Artificial Neural Networks. Analytical Chemistry, 1994, 66, 1070-1085.	3.2	94
103	Ultra-violet resonance Raman spectroscopy for the rapid discrimination of urinary tract infection bacteria. FEMS Microbiology Letters, 2004, 232, 127-132.	0.7	94
104	Discrimination of Aerobic Endospore-forming Bacteria via Electrospray-Ionization Mass Spectrometry of Whole Cell Suspensions. Analytical Chemistry, 2001, 73, 4134-4144.	3.2	93
105	A comparative investigation of modern feature selection and classification approaches for the analysis of mass spectrometry data. Analytica Chimica Acta, 2014, 829, 1-8.	2.6	93
106	Rapid identification using pyrolysis mass spectrometry and artificial neural networks of <i>Propionibacterium acnes</i> isolated from dogs. Journal of Applied Bacteriology, 1994, 76, 124-134.	1.1	91
107	Metabolomics of sebum reveals lipid dysregulation in Parkinson's disease. Nature Communications, 2021, 12, 1592.	5.8	91
108	Evaluation of extraction processes for intracellular metabolite profiling of mammalian cells: matching extraction approaches to cell type and metabolite targets. Metabolomics, 2010, 6, 427-438.	1.4	88

#	Article	IF	CITATIONS
109	Dual metabolomics: A novel approach to understanding plant–pathogen interactions. Phytochemistry, 2010, 71, 590-597.	1.4	88
110	Rapid monitoring of antibiotics using Raman and surface enhanced Raman spectroscopy. Analyst, The, 2005, 130, 1019.	1.7	85
111	Monitoring the Mode of Action of Antibiotics Using Raman Spectroscopy:Â Investigating Subinhibitory Effects of Amikacin onPseudomonasaeruginosa. Analytical Chemistry, 2005, 77, 2901-2906.	3.2	84
112	Neural networks and olive oil. Nature, 1992, 359, 594-594.	13.7	83
113	Diffuse reflectance absorbance spectroscopy taking in chemometrics (DRASTIC). A hyperspectral FT-IR-based approach to rapid screening for metabolite overproduction. Analytica Chimica Acta, 1997, 348, 273-282.	2.6	82
114	Explanatory analysis of spectroscopic data using machine learning of simple, interpretable rules. Vibrational Spectroscopy, 2003, 32, 33-45.	1.2	82
115	Accumulation of ionic liquids in Escherichia coli cells. Green Chemistry, 2008, 10, 836.	4.6	82
116	Noninvasive, On-Line Monitoring of the Biotransformation by Yeast of Glucose to Ethanol Using Dispersive Raman Spectroscopy and Chemometrics. Applied Spectroscopy, 1999, 53, 1419-1428.	1.2	81
117	Monitoring of complex industrial bioprocesses for metabolite concentrations using modern spectroscopies and machine learning: Application to gibberellic acid production. Biotechnology and Bioengineering, 2002, 78, 527-538.	1.7	79
118	Acclimation of metabolism to light in <scp><i>A</i></scp> <i>rabidopsis thaliana</i> : the glucose 6â€phosphate/phosphate translocator <scp>GPT</scp> 2 directs metabolic acclimation. Plant, Cell and Environment, 2015, 38, 1404-1417.	2.8	79
119	Root functional traits explain root exudation rate and composition across a range of grassland species. Journal of Ecology, 2022, 110, 21-33.	1.9	79
120	Novel noninvasive identification of biomarkers by analytical profiling of chronic wounds using volatile organic compounds. Wound Repair and Regeneration, 2010, 18, 391-400.	1.5	78
121	Plant Metabolomics and Its Potential for Systems Biology Research. Methods in Enzymology, 2011, 500, 299-336.	0.4	78
122	Combining Raman and FT-IR Spectroscopy with Quantitative Isotopic Labeling for Differentiation of <i>E. coli</i> Cells at Community and Single Cell Levels. Analytical Chemistry, 2015, 87, 4578-4586.	3.2	78
123	Metabolomic approaches reveal that cell wall modifications play a major role in ethyleneâ€mediated resistance against <i>Botrytis cinerea</i> . Plant Journal, 2011, 67, 852-868.	2.8	77
124	Classification of pyrolysis mass spectra by fuzzy multivariate rule induction-comparison with regression, K-nearest neighbour, neural and decision-tree methods. Analytica Chimica Acta, 1997, 348, 389-407.	2.6	75
125	PYCHEM: a multivariate analysis package for python. Bioinformatics, 2006, 22, 2565-2566.	1.8	75
126	Metabolic acclimation to hypoxia revealed by metabolite gradients in melon fruit. Journal of Plant Physiology, 2010, 167, 242-245.	1.6	75

#	Article	lF	CITATIONS
127	Metabolic responses of eukaryotic microalgae to environmental stress limit the ability of FT-IR spectroscopy for species identification. Algal Research, 2015, 11, 148-155.	2.4	74
128	Application of high-throughput Fourier-transform infrared spectroscopy in toxicology studies: contribution to a study on the development of an animal model for idiosyncratic toxicity. Toxicology Letters, 2004, 146, 197-205.	0.4	73
129	MALDI-MS and multivariate analysis for the detection and quantification of different milk species. Analytical and Bioanalytical Chemistry, 2011, 399, 3491-3502.	1.9	72
130	Reverse and Multiple Stable Isotope Probing to Study Bacterial Metabolism and Interactions at the Single Cell Level. Analytical Chemistry, 2016, 88, 9443-9450.	3.2	72
131	Investigating plant–plant interference by metabolic fingerprinting. Phytochemistry, 2003, 63, 705-710.	1.4	71
132	Rapid identification of species within the Mycobacterium tuberculosis complex by artificial neural network analysis of pyrolysis mass spectra. Journal of Medical Microbiology, 1994, 40, 170-173.	0.7	70
133	Metabolic dysregulation in vitaminÂE and carnitine shuttle energy mechanisms associate with human frailty. Nature Communications, 2019, 10, 5027.	5.8	70
134	Computational tools and workflows in metabolomics: An international survey highlights the opportunity for harmonisation through Galaxy. Metabolomics, 2017, 13, 12.	1.4	69
135	Screening ionic liquids for use in biotransformations with whole microbial cells. Green Chemistry, 2011, 13, 1843.	4.6	68
136	Correction of Mass Spectral Drift Using Artificial Neural Networks. Analytical Chemistry, 1996, 68, 271-280.	3.2	67
137	Making sense of the metabolome using evolutionary computation: seeing the wood with the trees. Journal of Experimental Botany, 2004, 56, 245-254.	2.4	66
138	Metabolomics in melon: A new opportunity for aroma analysis. Phytochemistry, 2014, 99, 61-72.	1.4	66
139	Optimization of Parameters for the Quantitative Surface-Enhanced Raman Scattering Detection of Mephedrone Using a Fractional Factorial Design and a Portable Raman Spectrometer. Analytical Chemistry, 2013, 85, 923-931.	3.2	65
140	A novel untargeted metabolomics correlation-based network analysis incorporating human metabolic reconstructions. BMC Systems Biology, 2013, 7, 107.	3.0	64
141	Rapid and quantitative analysis and bioprocesses using pyrolysis mass spectrometry and neural networks: application to indole production. Analytica Chimica Acta, 1993, 279, 17-26.	2.6	63
142	Matrix-suppressed laser desorption/ionisation mass spectrometry and its suitability for metabolome analyses. Rapid Communications in Mass Spectrometry, 2006, 20, 1192-1198.	0.7	63
143	Fourier Transform Infrared and Raman Spectroscopies for the Rapid Detection, Enumeration, and Growth Interaction of the Bacteria Staphylococcus aureus and Lactococcus lactis ssp. cremoris in Milk. Analytical Chemistry, 2011, 83, 5681-5687.	3.2	63
144	A comparison of different chemometrics approaches for the robust classification of electronic nose data. Analytical and Bioanalytical Chemistry, 2014, 406, 7581-7590.	1.9	63

#	Article	lF	CITATIONS
145	Quantitative Online Liquid Chromatography–Surface-Enhanced Raman Scattering (LC-SERS) of Methotrexate and its Major Metabolites. Analytical Chemistry, 2017, 89, 6702-6709.	3.2	63
146	Using a biphasic ionic liquid/water reaction system to improve oxygenase-catalysed biotransformation with whole cells. Green Chemistry, 2008, 10, 685.	4.6	62
147	Detection and Quantification of Bacterial Spoilage in Milk and Pork Meat Using MALDI-TOF-MS and Multivariate Analysis. Analytical Chemistry, 2012, 84, 5951-5958.	3.2	62
148	The influence of scaling metabolomics data on model classification accuracy. Metabolomics, 2015, 11, 684-695.	1.4	62
149	Subsurface Biomolecular Imaging of <i>Streptomyces coelicolor</i> Using Secondary Ion Mass Spectrometry. Analytical Chemistry, 2008, 80, 1942-1951.	3.2	61
150	Characterisation of intact microorganisms using electrospray ionisation mass spectrometry. FEMS Microbiology Letters, 1999, 176, 17-24.	0.7	60
151	Raman spectroscopy: lighting up the future of microbial identification. Future Microbiology, 2011, 6, 991-997.	1.0	60
152	Through-container, extremely low concentration detection of multiple chemical markers of counterfeit alcohol using a handheld SORS device. Scientific Reports, 2017, 7, 12082.	1.6	60
153	Untargeted metabolomics of COVID-19 patient serum reveals potential prognostic markers of both severity and outcome. Metabolomics, 2022, 18, 6.	1.4	60
154	Metabolic fingerprints of Mycobacterium bovis cluster with molecular type: implications for genotype–phenotype links. Microbiology (United Kingdom), 2006, 152, 2757-2765.	0.7	58
155	A flavour of omics approaches for the detection of food fraud. Current Opinion in Food Science, 2016, 10, 7-15.	4.1	58
156	Metabolomics-assisted synthetic biology. Current Opinion in Biotechnology, 2012, 23, 22-28.	3.3	56
157	Comparison of diffuse-reflectance absorbance and attenuated total reflectance FT-IR for the discrimination of bacteria. Analyst, The, 2004, 129, 1118.	1.7	55
158	Surveillance for lower airway pathogens in mechanically ventilated patients by metabolomic analysis of exhaled breath: a case-control study. Thorax, 2015, 70, 320-325.	2.7	54
159	Surface-Enhanced Raman Scattering (SERS) in Microbiology: Illumination and Enhancement of the Microbial World. Applied Spectroscopy, 2018, 72, 987-1000.	1.2	54
160	Genetic Programming:Â A Novel Method for the Quantitative Analysis of Pyrolysis Mass Spectral Data. Analytical Chemistry, 1997, 69, 4381-4389.	3.2	53
161	Sample preparation in matrix-assisted laser desorption/ionization mass spectrometry of whole bacterial cells and the detection of high mass (>20?kDa) proteins. Rapid Communications in Mass Spectrometry, 2002, 16, 1276-1286.	0.7	53
162	Integration of metabolomics in heart disease and diabetes research: current achievements and future outlook. Bioanalysis, 2011, 3, 2205-2222.	0.6	53

#	Article	IF	CITATIONS
163	Rapid, Accurate, and Quantitative Detection of Propranolol in Multiple Human Biofluids via Surface-Enhanced Raman Scattering. Analytical Chemistry, 2016, 88, 10884-10892.	3.2	52
164	Rapid screening for metabolite overproduction in fermentor broths, using pyrolysis mass spectrometry with multivariate calibration and artificial neural networks. Biotechnology and Bioengineering, 1994, 44, 1205-1216.	1.7	51
165	Quantitative Analysis of Multivariate Data Using Artificial Neural Networks: A Tutorial Review and Applications to the Deconvolution of Pyrolysis Mass Spectra. Zentralblatt Fur Bakteriologie: International Journal of Medical Microbiology, 1996, 284, 516-539.	0.5	50
166	On mass spectrometer instrument standardization and interlaboratory calibration transfer using neural networks. Analytica Chimica Acta, 1997, 348, 511-532.	2.6	50
167	Predicting human embryo viability: the road to non-invasive analysis of the secretome using metabolic footprinting. Reproductive BioMedicine Online, 2007, 15, 296-302.	1.1	50
168	Relatedness of medically important strains of <i>Saccharomyces cerevisiae</i> as revealed by phylogenetics and metabolomics. Yeast, 2008, 25, 501-512.	0.8	50
169	VOC-based metabolic profiling for food spoilage detection with the application to detecting Salmonella typhimurium-contaminated pork. Analytical and Bioanalytical Chemistry, 2010, 397, 2439-2449.	1.9	50
170	Rapid monitoring of recombinant antibody production by mammalian cell cultures using fourier transform infrared spectroscopy and chemometrics. Biotechnology and Bioengineering, 2010, 106, 432-442.	1.7	50
171	Monitoring the Clycosylation Status of Proteins Using Raman Spectroscopy. Analytical Chemistry, 2011, 83, 6074-6081.	3.2	50
172	Enhancing Disease Diagnosis: Biomedical Applications of Surface-Enhanced Raman Scattering. Applied Sciences (Switzerland), 2019, 9, 1163.	1.3	50
173	Surface Enhanced Raman Spectroscopy for Quantitative Analysis: Results of a Large-Scale European Multi-Instrument Interlaboratory Study. Analytical Chemistry, 2020, 92, 4053-4064.	3.2	50
174	Increased intracellular proteolysis reduces disease severity in an ER stress–associated dwarfism. Journal of Clinical Investigation, 2017, 127, 3861-3865.	3.9	50
175	Rapid and quantitative analysis of metabolites in fermentor broths using pyrolysis mass spectrometry with supervised learning: application to the screening of Penicillium chrysogenum fermentations for the overproduction of penicillins. Analytica Chimica Acta, 1995, 313, 25-43.	2.6	49
176	Identification and Discrimination of Oral Asaccharolytic Eubacterium spp. by Pyrolysis Mass Spectrometry and Artificial Neural Networks. Current Microbiology, 1996, 32, 77-84.	1.0	49
177	Structural, spectroscopic and redox properties of uranyl complexes with a maleonitrile containing ligand. Dalton Transactions, 2011, 40, 5939.	1.6	49
178	The Importance of Protonation in the Investigation of Protein Phosphorylation Using Raman Spectroscopy and Raman Optical Activity. Analytical Chemistry, 2011, 83, 7978-7983.	3.2	49
179	Comparing root exudate collection techniques: An improved hybrid method. Soil Biology and Biochemistry, 2021, 161, 108391.	4.2	49
180	Detection of small genotypic changes in Escherichia coli by pyrolysis mass spectroscopy. FEMS Microbiology Letters, 1990, 71, 133-137.	0.7	48

#	Article	IF	CITATIONS
181	Contribution of pyrolysis-mass spectrometry (Py-MS) to authenticity testing of honey. Journal of Analytical and Applied Pyrolysis, 2001, 60, 79-87.	2.6	48
182	The rapid identification of Acinetobacter species using Fourier transform infrared spectroscopy. Journal of Applied Microbiology, 2004, 96, 328-339.	1.4	48
183	Quantitative detection of metabolites using matrix-assisted laser desorption/ionization mass spectrometry with 9-aminoacridine as the matrix. Rapid Communications in Mass Spectrometry, 2007, 21, 2072-2078.	0.7	48
184	FUM2, a Cytosolic Fumarase, Is Essential for Acclimation to Low Temperature in <i>Arabidopsis thaliana</i> . Plant Physiology, 2016, 172, 118-127.	2.3	48
185	Biochemical Analyses of Sorghum Varieties Reveal Differential Responses to Drought. PLoS ONE, 2016, 11, e0154423.	1.1	48
186	Explanatory Analysis of the Metabolome Using Genetic Programming of Simple, Interpretable Rules. Genetic Programming and Evolvable Machines, 2000, 1, 243-258.	1.5	46
187	Rapid through-container detection of fake spirits and methanol quantification with handheld Raman spectroscopy. Analyst, The, 2019, 144, 324-330.	1.7	46
188	Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study. Analytical Chemistry, 2020, 92, 15745-15756.	3.2	46
189	Differentiation of Micromonospora Isolates from a Coastal Sediment in Wales on the Basis of Fourier Transform Infrared Spectroscopy, 16S rRNA Sequence Analysis, and the Amplified Fragment Length Polymorphism Technique. Applied and Environmental Microbiology, 2004, 70, 6619-6627.	1.4	45
190	Rapid quantification of the adulteration of fresh coconut water by dilution and sugars using Raman spectroscopy and chemometrics. Food Chemistry, 2019, 272, 157-164.	4.2	45
191	Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks. FEMS Microbiology Letters, 1996, 140, 233-9.	0.7	45
192	Quantitative analysis of the pyrolysis—mass spectra of complex mixtures using artificial neural networks: Application to amino acids in glycogen. Journal of Analytical and Applied Pyrolysis, 1993, 26, 93-114.	2.6	44
193	Fourier transform infrared spectroscopy and chemometrics as a tool for the rapid detection of other vegetable fats mixed in cocoa butter. JAOCS, Journal of the American Oil Chemists' Society, 2001, 78, 993-1000.	0.8	44
194	Metabolomics – the way forward. Metabolomics, 2005, 1, 1-2.	1.4	44
195	Multiblock principal component analysis: an efficient tool for analyzing metabolomics data which contain two influential factors. Metabolomics, 2012, 8, 37-51.	1.4	44
196	Characterization of exopolymers of aquatic bacteria by pyrolysis-mass spectrometry. Applied and Environmental Microbiology, 1991, 57, 1595-1601.	1.4	44
197	Simultaneous multiplexed quantification of nicotine and its metabolites using surface enhanced Raman scattering. Analyst, The, 2014, 139, 4820-4827.	1.7	43
198	Reference materials for MS-based untargeted metabolomics and lipidomics: a review by the metabolomics quality assurance and quality control consortium (mQACC). Metabolomics, 2022, 18, 24.	1.4	43

#	Article	IF	CITATIONS
199	The deconvolution of pyrolysis mass spectra using genetic programming: application to the identification of someEubacteriumspecies. FEMS Microbiology Letters, 1998, 160, 237-246.	0.7	42
200	Rapid analysis of the expression of heterologous proteins in Escherichia coli using pyrolysis mass spectrometry and Fourier transform infrared spectroscopy with chemometrics: application to α2-interferon production. Journal of Biotechnology, 1999, 72, 157-168.	1.9	42
201	Impact of Silver(I) on the Metabolism of Shewanella oneidensis. Journal of Bacteriology, 2010, 192, 1143-1150.	1.0	42
202	Metabolite profiling of CHO cells: Molecular reflections of bioprocessing effectiveness. Biotechnology Journal, 2015, 10, 1434-1445.	1.8	42
203	Simultaneous multiplexed quantification of caffeine and its major metabolites theobromine and paraxanthine using surface-enhanced Raman scattering. Analytical and Bioanalytical Chemistry, 2015, 407, 8253-8261.	1.9	42
204	Achieving optimal SERS through enhanced experimental design. Journal of Raman Spectroscopy, 2016, 47, 59-66.	1.2	42
205	Commentary on "Goodacre R, Timmins ÉM, Rooney PJ, Rowland JJ, Kell DB: Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks. FEMS Microbiol Lett 1996; 140:233-239â€; the most cited paper in the Journal for that year. FEMS Microbiology Letters. 2017. 364. fnx018.	0.7	42
206	Differentiation of brewing yeast strains by pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. , 1998, 14, 885-893.		41
207	Discrimination between methicillin-resistant and methicillin- susceptible Staphylococcus aureus using pyrolysis mass spectrometry and artificial neural networks. Journal of Antimicrobial Chemotherapy, 1998, 41, 27-34.	1.3	41
208	Biomarkers of Dietary Energy Restriction in Women at Increased Risk of Breast Cancer. Cancer Prevention Research, 2009, 2, 720-731.	0.7	41
209	2p or not 2p: tuppence-based SERS for the detection of illicit materials. Analyst, The, 2013, 138, 118-122.	1.7	41
210	Imaging Isotopically Labeled Bacteria at the Single-Cell Level Using High-Resolution Optical Infrared Photothermal Spectroscopy. Analytical Chemistry, 2021, 93, 3082-3088.	3.2	41
211	Phenotypic Characterization of <i>Shewanella oneidensis</i> MR-1 under Aerobic and Anaerobic Growth Conditions by Using Fourier Transform Infrared Spectroscopy and High-Performance Liquid Chromatography Analyses. Applied and Environmental Microbiology, 2010, 76, 6266-6276.	1.4	40
212	TARDIS-based microbial metabolomics: time and relative differences in systems. Trends in Microbiology, 2011, 19, 315-322.	3.5	40
213	Rapid, accurate, and comparative differentiation of clinically and industrially relevant microorganisms via multiple vibrational spectroscopic fingerprinting. Analyst, The, 2016, 141, 5127-5136.	1.7	40
214	SERS of meso-droplets supported on superhydrophobic wires allows exquisitely sensitive detection of dipicolinic acid, an anthrax biomarker, considerably below the infective dose. Chemical Communications, 2016, 52, 9925-9928.	2.2	40
215	Evidence That Multiple Defects in Lipid Regulation Occur before Hyperglycemia during the Prodrome of Type-2 Diabetes. PLoS ONE, 2014, 9, e103217.	1.1	40
216	Explanatory Optimization of Protein Mass Spectrometry via Genetic Search. Analytical Chemistry, 2003, 75, 6679-6686.	3.2	39

#	Article	IF	CITATIONS
217	The rapid differentiation of Streptomyces isolates using Fourier transform infrared spectroscopy. Vibrational Spectroscopy, 2006, 40, 213-218.	1.2	39
218	Detection of Protein Glycosylation Using Tip-Enhanced Raman Scattering. Analytical Chemistry, 2016, 88, 2105-2112.	3.2	39
219	Chicken, beams, and Campylobacter: rapid differentiation of foodborne bacteria via vibrational spectroscopy and MALDI-mass spectrometry. Analyst, The, 2016, 141, 111-122.	1.7	39
220	Metabolomics and metabolite profiling. Analytical and Bioanalytical Chemistry, 2013, 405, 5003-5004.	1.9	38
221	Rapid and quantitative analysis of recombinant protein expression using pyrolysis mass spectrometry and artificial neural networks: application to mammalian cytochrome b5 in Escherichia coli. Journal of Biotechnology, 1994, 34, 185-193.	1.9	37
222	Rapid characterization of microbial biodegradation pathways by FT-IR spectroscopy. Journal of Microbiological Methods, 2006, 67, 273-280.	0.7	37
223	Discrimination of bacteria using pyrolysis-gas chromatography-differential mobility spectrometry (Py-GC-DMS) and chemometrics. Analyst, The, 2009, 134, 557-563.	1.7	37
224	Intermittent energy restriction induces changes in breast gene expression and systemic metabolism. Breast Cancer Research, 2016, 18, 57.	2.2	37
225	Circadian rhythm of exhaled biomarkers in health and asthma. European Respiratory Journal, 2019, 54, 1901068.	3.1	37
226	Phenotypic and genotypic differences between certain strains ofClostridium acetobutylicum. FEMS Microbiology Letters, 1995, 125, 199-204.	0.7	36
227	Dupuytren's: a systems biology disease. Arthritis Research and Therapy, 2011, 13, 238.	1.6	36
228	Label-Free Surface Enhanced Raman Scattering Approach for High-Throughput Screening of Biocatalysts. Analytical Chemistry, 2016, 88, 5898-5903.	3.2	36
229	Two Glycerol-3-Phosphate Dehydrogenases from <i>Chlamydomonas</i> Have Distinct Roles in Lipid Metabolism. Plant Physiology, 2017, 174, 2083-2097.	2.3	36
230	The Role of Raman Spectroscopy Within Quantitative Metabolomics. Annual Review of Analytical Chemistry, 2021, 14, 323-345.	2.8	36
231	Degeneration of solventogenic Clostridium strains monitored by Fourier transform infrared spectroscopy of bacterial cells. Journal of Industrial Microbiology and Biotechnology, 2001, 27, 314-321.	1.4	35
232	Combining metabolic fingerprinting and footprinting to understand the phenotypic response of HPV16 E6 expressing cervical carcinoma cells exposed to the HIV anti-viral drug lopinavir. Analyst, The, 2010, 135, 1235.	1.7	35
233	Enhancing Surface Enhanced Raman Scattering (SERS) Detection of Propranolol with Multiobjective Evolutionary Optimization. Analytical Chemistry, 2012, 84, 7899-7905.	3.2	35
234	High-throughput metabolic screening of microalgae genetic variation in response to nutrient limitation. Metabolomics, 2016, 12, 9.	1.4	35

#	Article	IF	CITATIONS
235	Comparative Metabolomics and Molecular Phylogenetics of Melon (Cucumis melo, Cucurbitaceae) Biodiversity. Metabolites, 2020, 10, 121.	1.3	35
236	ATR (ataxia telangiectasia mutated- and Rad3-related kinase) is activated by mild hypothermia in mammalian cells and subsequently activates p53. Biochemical Journal, 2011, 435, 499-508.	1.7	34
237	Detection and quantification of the opioid tramadol in urine using surface enhanced Raman scattering. Analyst, The, 2015, 140, 5965-5970.	1.7	34
238	Fourier transform infrared spectroscopy of follicular fluids from large and small antral follicles. Human Reproduction, 2000, 15, 1667-1671.	0.4	33
239	Spatial metabolic fingerprinting using FT-IR spectroscopy: investigating abiotic stresses on Micrasterias hardyi. Analyst, The, 2008, 133, 1707.	1.7	33
240	A genetic algorithm-Bayesian network approach for the analysis of metabolomics and spectroscopic data: application to the rapid identification of Bacillus spores and classification of Bacillus species. BMC Bioinformatics, 2011, 12, 33.	1.2	33
241	Liquid Chromatography–Mass Spectrometry Calibration Transfer and Metabolomics Data Fusion. Analytical Chemistry, 2012, 84, 9848-9857.	3.2	33
242	Selective induction and subcellular distribution of ACONITASE 3 reveal the importance of cytosolic citrate metabolism during lipid mobilization in <i>Arabidopsis</i> . Biochemical Journal, 2014, 463, 309-317.	1.7	33
243	Oxidized phosphatidylcholines suggest oxidative stress in patients with medium-chain acyl-CoA dehydrogenase deficiency. Talanta, 2015, 139, 62-66.	2.9	33
244	Improved Descriptors for the Quantitative Structure–Activity Relationship Modeling of Peptides and Proteins. Journal of Chemical Information and Modeling, 2018, 58, 234-243.	2.5	33
245	Headspace volatile organic compounds from bacteria implicated in ventilator-associated pneumonia analysed by TD-GC/MS. Journal of Breath Research, 2018, 12, 026002.	1.5	33
246	Optimization of XCMS parameters for LC–MS metabolomics: an assessment of automated versus manual tuning and its effect on the final results. Metabolomics, 2020, 16, 14.	1.4	33
247	Discrimination of bacteria using whole organism fingerprinting: the utility of modern physicochemical techniques for bacterial typing. Analyst, The, 2021, 146, 770-788.	1.7	33
248	Rapid Detection and Quantification of Novel Psychoactive Substances (NPS) Using Raman Spectroscopy and Surface-Enhanced Raman Scattering. Frontiers in Chemistry, 2019, 7, 412.	1.8	32
249	Metabonomic evaluation of idiosyncrasy-like liver injury in rats cotreated with ranitidine and lipopolysaccharide. Toxicology and Applied Pharmacology, 2006, 212, 35-44.	1.3	31
250	Imaging mass spectrometry using chemical inkjet printing reveals differential protein expression in human oral squamous cell carcinoma. Analyst, The, 2009, 134, 301-307.	1.7	31
251	Optimization of matrix assisted desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) for the characterization of Bacillus and Brevibacillus species. Analytica Chimica Acta, 2014, 840, 49-57.	2.6	30
252	Metabolic profiling reveals potential metabolic markers associated with Hypoxia Inducible Factor-mediated signalling in hypoxic cancer cells. Scientific Reports, 2015, 5, 15649.	1.6	30

#	Article	IF	CITATIONS
253	Monitoring the Succinate Dehydrogenase Activity Isolated from Mitochondria by Surface Enhanced Raman Scattering. Journal of Physical Chemistry C, 2010, 114, 7308-7313.	1.5	29
254	Quantitative Online Liquid Chromatography-Surface-Enhanced Raman Scattering of Purine Bases. Analytical Chemistry, 2014, 86, 9977-9984.	3.2	29
255	Quantitative detection of codeine in human plasma using surface-enhanced Raman scattering via adaptation of the isotopic labelling principle. Analyst, The, 2017, 142, 1099-1105.	1.7	29
256	Raman Spectroscopy to Monitor Post-Translational Modifications and Degradation in Monoclonal Antibody Therapeutics. Analytical Chemistry, 2020, 92, 10381-10389.	3.2	29
257	Use of Pyrolysis Mass Spectrometry with Supervised Learning for the Assessment of the Adulteration of Milk of Different Species. Applied Spectroscopy, 1997, 51, 1144-1153.	1.2	28
258	Chemometric Analysis of Diffuse Reflectance-Absorbance Fourier Transform Infrared Spectra Using Rule Induction Methods: Application to the Classification of Eubacterium Species. Applied Spectroscopy, 1998, 52, 823-832.	1.2	28
259	Quantification of casein phosphorylation with conformational interpretation using Raman spectroscopy. Analyst, The, 2007, 132, 1053.	1.7	28
260	The challenge of applying Raman spectroscopy to monitor recombinant antibody production. Analyst, The, 2013, 138, 6977.	1.7	28
261	Rapid, high-throughput, and quantitative determination of orange juice adulteration by Fourier-transform infrared spectroscopy. Analytical Methods, 2016, 8, 5581-5586.	1.3	28
262	Probing the action of a novel anti-leukaemic drug therapy at the single cell level using modern vibrational spectroscopy techniques. Scientific Reports, 2017, 7, 2649.	1.6	28
263	Volatile organic compound signature from co-culture of lung epithelial cell line with <i>Pseudomonas aeruginosa</i> . Analyst, The, 2018, 143, 3148-3155.	1.7	28
264	Determination of the geographical origin of Italian extra virgin olive oil using pyrolysis mass spectrometry and artificial neural networks. Journal of Analytical and Applied Pyrolysis, 1997, 40-41, 159-170.	2.6	27
265	A laser desorption ionisation mass spectrometry approach for high throughput metabolomics. Metabolomics, 2005, 1, 243-250.	1.4	27
266	Towards quantitatively reproducible substrates for SERS. Analyst, The, 2008, 133, 1449.	1.7	27
267	Raman chemical mapping reveals site of action of HIV protease inhibitors in HPV16 E6 expressing cervical carcinoma cells. Analytical and Bioanalytical Chemistry, 2010, 398, 3051-3061.	1.9	27
268	Fourier transform infrared spectroscopy as a metabolite fingerprinting tool for monitoring the phenotypic changes in complex bacterial communities capable of degrading phenol. Environmental Microbiology, 2010, 12, 3253-3263.	1.8	27
269	The optimisation of facile substrates for surface enhanced Raman scattering through galvanic replacement of silver onto copper. Analyst, The, 2012, 137, 2791.	1.7	27
270	Theory of SERS enhancement: general discussion. Faraday Discussions, 2017, 205, 173-211.	1.6	27

#	Article	IF	CITATIONS
271	Rapid discrimination of the causal agents of urinary tract infection using ToF-SIMS with chemometric cluster analysis. Applied Surface Science, 2006, 252, 6869-6874.	3.1	26
272	Laser desorption/ionization mass spectrometry on porous silicon for metabolome analyses: influence of surface oxidation. Rapid Communications in Mass Spectrometry, 2007, 21, 2157-2166.	0.7	26
273	Monitoring Antibody Aggregation in Early Drug Development Using Raman Spectroscopy and Perturbation-Correlation Moving Windows. Analytical Chemistry, 2014, 86, 11133-11140.	3.2	26
274	Metabolic Profiling of Geobacter sulfurreducens during Industrial Bioprocess Scale-Up. Applied and Environmental Microbiology, 2015, 81, 3288-3298.	1.4	26
275	Application of surface enhanced Raman scattering to the solution based detection of a popular legal high, 5,6-methylenedioxy-2-aminoindane (MDAI). Analyst, The, 2015, 140, 4399-4406.	1.7	26
276	Elevated luteinizing hormone despite normal testosterone levels in older men—natural history, risk factors and clinical features. Clinical Endocrinology, 2018, 88, 479-490.	1.2	26
277	TD/GC–MS analysis of volatile markers emitted from mono- and co-cultures of Enterobacter cloacae and Pseudomonas aeruginosa in artificial sputum. Metabolomics, 2018, 14, 66.	1.4	26
278	Rapid quantitative analysis of binary mixtures of Escherichia coli strains using pyrolysis mass spectrometry with multivariate calibration and artificial neural networks. Journal of Applied Microbiology, 1997, 83, 208-218.	1.4	25
279	Assessment of adaptive focused acoustics versus manual vortex/freeze-thaw for intracellular metabolite extraction from Streptomyces lividans producing recombinant proteins using GC-MS and multi-block principal component analysis. Analyst, The, 2010, 135, 934.	1.7	25
280	Integrating multiple analytical platforms and chemometrics for comprehensive metabolic profiling: application to meat spoilage detection. Analytical and Bioanalytical Chemistry, 2013, 405, 5063-5074.	1.9	25
281	A Novel Adaptation Mechanism Underpinning Algal Colonization of a Nuclear Fuel Storage Pond. MBio, 2018, 9, .	1.8	25
282	The use of pyrolysis—mass spectrometry to detect the fimbrial adhesive antigen F41 from Escherichia coli HB101 (pSLM204). Journal of Analytical and Applied Pyrolysis, 1991, 22, 19-28.	2.6	24
283	High-throughput phenotyping of uropathogenic E. coli isolates with Fourier transform infrared spectroscopy. Analyst, The, 2013, 138, 1363.	1.7	24
284	Monitoring Guanidinium-Induced Structural Changes in Ribonuclease Proteins Using Raman Spectroscopy and 2D Correlation Analysis. Analytical Chemistry, 2013, 85, 3570-3575.	3.2	24
285	Profiling of spatial metabolite distributions in wheat leaves under normal and nitrate limiting conditions. Phytochemistry, 2015, 115, 99-111.	1.4	24
286	Application of HPLC–PDA–MS metabolite profiling to investigate the effect of growth temperature and day length on blackcurrant fruit. Metabolomics, 2019, 15, 12.	1.4	24
287	A microbiome and metabolomic signature of phases of cutaneous healing identified by profiling sequential acute wounds of human skin: An exploratory study. PLoS ONE, 2020, 15, e0229545.	1.1	24
288	An epidemiological study of Staphylococcus intermedius strains isolated from dogs, their owners and veterinary surgeons. Journal of Analytical and Applied Pyrolysis, 1997, 44, 49-64.	2.6	23

#	Article	IF	CITATIONS
289	Proof-of-principle study to detect metabolic changes in peritoneal dialysis effluent in patients who develop encapsulating peritoneal sclerosis. Nephrology Dialysis Transplantation, 2012, 27, 2502-2510.	0.4	23
290	Effects of high relative humidity and dry purging on VOCs obtained during breath sampling on common sorbent tubes. Journal of Breath Research, 2020, 14, 046006.	1.5	23
291	Plant seed classification using pyrolysis mass spectrometry with unsupervised learning: The application of auto-associative and Kohonen artificial neural networks. Chemometrics and Intelligent Laboratory Systems, 1996, 34, 69-83.	1.8	22
292	Using metabolic fingerprinting of plants for evaluating nitrogen deposition impacts on the landscape level. Global Change Biology, 2006, 12, 1460-1465.	4.2	22
293	Implementation of Fourier transform infrared spectroscopy for the rapid typing of uropathogenic Escherichia coli. European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 983-988.	1.3	22
294	SERS in biology/biomedical SERS: general discussion. Faraday Discussions, 2017, 205, 429-456.	1.6	22
295	Development of an adaptable headspace sampling method for metabolic profiling of the fungal volatome. Analyst, The, 2018, 143, 4155-4162.	1.7	22
296	Rapid Spectroscopic Liquid Biopsy for the Universal Detection of Brain Tumours. Cancers, 2021, 13, 3851.	1.7	22
297	Simultaneous Raman and infrared spectroscopy: a novel combination for studying bacterial infections at the single cell level. Chemical Science, 2022, 13, 8171-8179.	3.7	22
298	Rheological phenomena occurring during the shearing flow of mayonnaise. Journal of Rheology, 1998, 42, 1537-1553.	1.3	21
299	Selective Detection of Proteins in Mixtures Using Electrospray Ionization Mass Spectrometry:Â Influence of Instrumental Settings and Implications for Proteomics. Analytical Chemistry, 2004, 76, 5024-5032.	3.2	21
300	Separating the Inseparable: The Metabolomic Analysis of Plant–Pathogen Interactions. Methods in Molecular Biology, 2011, 860, 31-49.	0.4	21
301	Electrochemical modulation of SERS at the liquid/liquid interface. Chemical Communications, 2014, 50, 4482-4484.	2.2	21
302	Quantitative detection of isotopically enrichedE. colicells by SERS. Faraday Discussions, 2017, 205, 331-343.	1.6	21
303	Rapid Analysis of High-Dimensional Bioprocesses Using Multivariate Spectroscopies and Advanced Chemometrics. Advances in Biochemical Engineering/Biotechnology, 1999, 66, 83-113.	0.6	20
304	ToF-SIMS studies of Bacillus using multivariate analysis with possible identification and taxonomic applications. Applied Surface Science, 2006, 252, 6719-6722.	3.1	20
305	Metabolic fingerprinting as a tool to monitor whole-cell biotransformations. Analytical and Bioanalytical Chemistry, 2011, 399, 387-401.	1.9	20
306	Rapid reagentless quantification of alginate biosynthesis in Pseudomonas fluorescens bacteria mutants using FT-IR spectroscopy coupled to multivariate partial least squares regression. Analytical and Bioanalytical Chemistry, 2012, 403, 2591-2599.	1.9	20

#	Article	IF	CITATIONS
307	Exploring the mode of action of dithranol therapy for psoriasis: a metabolomic analysis using HaCaT cells. Molecular BioSystems, 2015, 11, 2198-2209.	2.9	20
308	Detection of glycosylation and iron-binding protein modifications using Raman spectroscopy. Analyst, The, 2017, 142, 808-814.	1.7	20
309	Methodological considerations for large-scale breath analysis studies: lessons from the U-BIOPRED severe asthma project. Journal of Breath Research, 2019, 13, 016001.	1.5	20
310	Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for Plant Metabolite Profiling and Metabolite Identification. Methods in Molecular Biology, 2011, 860, 157-176.	0.4	20
311	The identification of Bradyrhizobium japonicum strains isolated from Italian soils. Microbiology (United Kingdom), 1994, 140, 2333-2339.	0.7	19
312	Metabolic Fingerprinting with Fourier Transform Infrared Spectroscopy. , 2003, , 111-124.		19
313	Multiobjective evolutionary optimisation for surface-enhanced Raman scattering. Analytical and Bioanalytical Chemistry, 2010, 397, 1893-1901.	1.9	19
314	Miniaturised free flow isotachophoresis of bacteria using an injection moulded separation device. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 903, 53-59.	1.2	19
315	Making colourful sense of Raman images of single cells. Analyst, The, 2015, 140, 1852-1858.	1.7	19
316	Translation Stress Positively Regulates MscL-Dependent Excretion of Cytoplasmic Proteins. MBio, 2018, 9, .	1.8	19
317	Rapid differentiation of <i>Campylobacter jejuni</i> cell wall mutants using Raman spectroscopy, SERS and mass spectrometry combined with chemometrics. Analyst, The, 2020, 145, 1236-1249.	1.7	19
318	Quantitative analysis of the adulteration of orange juice with sucrose using pyrolysis mass spectrometry and chemometrics. Journal of Analytical and Applied Pyrolysis, 1997, 40-41, 135-158.	2.6	18
319	Whole-organism Fingerprinting of the Genus Carnobacterium using Fourier Transform Infrared Spectroscopy (FT-IR). Systematic and Applied Microbiology, 2004, 27, 186-191.	1.2	18
320	Phenotypic profiling of keloid scars using FT-IR microspectroscopy reveals a unique spectral signature. Archives of Dermatological Research, 2010, 302, 705-715.	1.1	18
321	Highly sensitive detection of nitroaromatic explosives at discrete nanowire arrays. Faraday Discussions, 2013, 164, 283.	1.6	18
322	Metabolomics investigation of recombinant mTNFα production in Streptomyces lividans. Microbial Cell Factories, 2015, 14, 157.	1.9	18
323	Evaluation of metabolomics profiles of grain from maize hybrids derived from near-isogenic GM positive and negative segregant inbreds demonstrates that observed differences cannot be attributed unequivocally to the GM trait. Metabolomics, 2016, 12, 82.	1.4	18
324	Towards improved quantitative analysis using surface-enhanced Raman scattering incorporating internal isotope labelling. Analytical Methods, 2017, 9, 6636-6644.	1.3	18

#	Article	IF	CITATIONS
325	Detection of small genotypic changes in Escherichia coli by pyrolysis mass spectroscopy. FEMS Microbiology Letters, 1990, 71, 133-138.	0.7	18
326	Metabolic profiling of meat: assessment of pork hygiene and contamination with Salmonella typhimurium. Analyst, The, 2011, 136, 508-514.	1.7	17
327	Dupuytren's disease metabolite analyses reveals alterations following initial short-term fibroblast culturing. Molecular BioSystems, 2012, 8, 2274.	2.9	17
328	MUSCLE: automated multi-objective evolutionary optimization of targeted LC-MS/MS analysis. Bioinformatics, 2015, 31, 975-977.	1.8	17
329	Classification of Bacillus and Brevibacillus species using rapid analysis of lipids by mass spectrometry. Analytical and Bioanalytical Chemistry, 2016, 408, 7865-7878.	1.9	17
330	Exhaled breath metabolomics reveals a pathogen-specific response in a rat pneumonia model for two human pathogenic bacteria: a proof-of-concept study. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L751-L756.	1.3	17
331	Metabolic profiling: pathways in discovery. Drug Discovery Today, 2004, 9, 260-261.	3.2	16
332	Rapid characterization of <i>N</i> â€linked glycans from secreted and gelâ€purified monoclonal antibodies using MALDIâ€ToF mass spectrometry. Biotechnology and Bioengineering, 2010, 107, 902-908.	1.7	16
333	Monitoring the Effects of Chiral Pharmaceuticals on Aquatic Microorganisms by Metabolic Fingerprinting. Applied and Environmental Microbiology, 2010, 76, 2075-2085.	1.4	16
334	Multiple metabolomics of uropathogenic E. coli reveal different information content in terms of metabolic potential compared to virulence factors. Analyst, The, 2014, 139, 4193-4199.	1.7	16
335	A systematic analysis of TCA <i>Escherichia coli</i> mutants reveals suitable genetic backgrounds for enhanced hydrogen and ethanol production using glycerol as main carbon source. Biotechnology Journal, 2015, 10, 1750-1761.	1.8	16
336	<scp>UV</scp> resonance Raman spectroscopy: a process analytical tool for host cell <scp>DNA</scp> and <scp>RNA</scp> dynamics in mammalian cell lines. Journal of Chemical Technology and Biotechnology, 2015, 90, 237-243.	1.6	16
337	Detecting food authenticity and integrity. Analytical Methods, 2016, 8, 3281-3283.	1.3	16
338	Metabolomic analysis of riboswitch containing E. coli recombinant expression system. Molecular BioSystems, 2016, 12, 350-361.	2.9	16
339	pH plays a role in the mode of action of trimethoprim on Escherichia coli. PLoS ONE, 2018, 13, e0200272.	1.1	16
340	Rapid UHPLC-MS metabolite profiling and phenotypic assays reveal genotypic impacts of nitrogen supplementation in oats. Metabolomics, 2019, 15, 42.	1.4	16
341	Towards Improving Point-of-Care Diagnosis of Non-malaria Febrile Illness: A Metabolomics Approach. PLoS Neglected Tropical Diseases, 2016, 10, e0004480.	1.3	16
342	Characterization of <i>Carnobacterium</i> species by pyrolysis mass spectrometry. Journal of Applied Bacteriology, 1995, 78, 88-96.	1.1	15

#	Article	IF	CITATIONS
343	Quantitative analysis of methyl green using surface-enhanced resonance Raman scattering. Analytical and Bioanalytical Chemistry, 2009, 394, 1833-1838.	1.9	15
344	Metabolomic analyses show that electron donor and acceptor ratios control anaerobic electron transfer pathways in Shewanella oneidensis. Metabolomics, 2013, 9, 642-656.	1.4	15
345	Detection of early stage changes associated with adipogenesis using R aman spectroscopy under aseptic conditions. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 1012-1019.	1.1	15
346	Simultaneous quantification of the boar-taint compounds skatole and androstenone by surface-enhanced Raman scattering (SERS) and multivariate data analysis. Analytical and Bioanalytical Chemistry, 2015, 407, 7787-7795.	1.9	15
347	The use of pyrolysis mass spectrometry in the characterization of Rhizobium meliloti. Letters in Applied Microbiology, 1991, 13, 157-160.	1.0	14
348	Sub-species Discrimination, Using Pyrolysis Mass Spectrometry and Self-organising Neural Networks, of Propionibacterium acnes Isolated from Normal Human Skin. Zentralblatt Fur Bakteriologie: International Journal of Medical Microbiology, 1996, 284, 501-515.	0.5	14
349	The detection of caffeine in a variety of beverages using Curie-point pyrolysis mass spectrometry and genetic programming. Analyst, The, 1999, 124, 1069-1074.	1.7	14
350	Differentiation of Peats Used in the Preparation of Malt for Scotch Whisky Production Using Fourier Transform Infrared Spectroscopy. Journal of the Institute of Brewing, 2006, 112, 333-339.	0.8	14
351	Investigating alginate production and carbon utilization in Pseudomonas fluorescens SBW25 using mass spectrometry-based metabolic profiling. Metabolomics, 2013, 9, 403-417.	1.4	14
352	Analytical SERS: general discussion. Faraday Discussions, 2017, 205, 561-600.	1.6	14
353	Detection of the adulteration of fresh coconut water <i>via</i> NMR spectroscopy and chemometrics. Analyst, The, 2019, 144, 1401-1408.	1.7	14
354	Targeting Methionine Synthase in a Fungal Pathogen Causes a Metabolic Imbalance That Impacts Cell Energetics, Growth, and Virulence. MBio, 2020, 11, .	1.8	14
355	Fluorescent Amplified Fragment Length Polymorphism Probabilistic Database for Identification of Bacterial Isolates from Urinary Tract Infections. Journal of Clinical Microbiology, 2002, 40, 2795-2800.	1.8	13
356	Global metabolite profiles of rice brown planthopper-resistant traits reveal potential secondary metabolites for both constitutive and inducible defenses. Metabolomics, 2019, 15, 151.	1.4	13
357	Radiation Tolerance of Pseudanabaena catenata, a Cyanobacterium Relevant to the First Generation Magnox Storage Pond. Frontiers in Microbiology, 2020, 11, 515.	1.5	13
358	Evolutionary Computation for the Interpretation of Metabolomic Data. , 2003, , 239-256.		13
359	Use of earthworm casts to validate FT-IR spectroscopy as a â€~sentinel' technology for high-throughput monitoring of global changes in microbial ecologyThe 7th international symposium on earthworm ecology · Cardiff · Wales · 2002. Pedobiologia, 2003, 47, 440-446.	0.5	12
360	Food quality and microbial succession in ageing earthworm casts: standard microbial indices and metabolic fingerprintingThe 7th international symposium on earthworm ecology · Cardiff · Wales · 2002. Pedobiologia, 2003, 47, 888-894.	0.5	12

#	Article	IF	CITATIONS
361	From phenotype to genotype: whole tissue profiling for plant breeding. Metabolomics, 2007, 3, 489-501.	1.4	12
362	Chemometrics models for overcoming high between subject variability: applications in clinical metabolic profiling studies. Metabolomics, 2014, 10, 375-385.	1.4	12
363	Objective assessment of SERS thin films: comparison of silver on copper via galvanic displacement with commercially available fabricated substrates. Analytical Methods, 2017, 9, 4783-4789.	1.3	12
364	Mitochondrial aconitase is a key regulator of energy production for growth and protein expression in Chinese hamster ovary cells. Metabolomics, 2018, 14, 136.	1.4	12
365	Polymer Pen Lithography-Fabricated DNA Arrays for Highly Sensitive and Selective Detection of Unamplified Ganoderma Boninense DNA. Polymers, 2019, 11, 561.	2.0	12
366	Biochemical signatures of acclimation by Chlamydomonas reinhardtii to different ionic stresses. Algal Research, 2019, 37, 83-91.	2.4	12
367	Simultaneous Raman and Infrared Spectroscopy of Stable Isotope Labelled Escherichia coli. Sensors, 2022, 22, 3928.	2.1	12
368	Metabolic fingerprinting for bio-indication of nitrogen responses in Calluna vulgaris heath communities. Metabolomics, 2005, 1, 279-285.	1.4	11
369	Fractional Factorial Design of MALDI-TOF-MS Sample Preparations for the Optimized Detection of Phospholipids and Acylglycerols. Analytical Chemistry, 2016, 88, 6301-6308.	3.2	11
370	The androgen receptor gene CAG repeat in relation to 4-year changes in androgen-sensitive endpoints in community-dwelling older European men. European Journal of Endocrinology, 2016, 175, 583-593.	1.9	11
371	Biofluids and other techniques: general discussion. Faraday Discussions, 2016, 187, 575-601.	1.6	11
372	Ultrasensitive and towards single molecule SERS: general discussion. Faraday Discussions, 2017, 205, 291-330.	1.6	11
373	Quantification of protein glycation using vibrational spectroscopy. Analyst, The, 2020, 145, 3686-3696.	1.7	11
374	Portable through Bottle SORS for the Authentication of Extra Virgin Olive Oil. Applied Sciences (Switzerland), 2021, 11, 8347.	1.3	11
375	Metabolomics Analysis Reveals the Participation of Efflux Pumps and Ornithine in the Response of Pseudomonas putida DOT-T1E Cells to Challenge with Propranolol. PLoS ONE, 2016, 11, e0156509.	1.1	11
376	Rapid detection and quantification of the adulteration of orange juice with grapefruit juice using handheld Raman spectroscopy and multivariate analysis. Analytical Methods, 2022, 14, 1663-1670.	1.3	11
377	The Structural and Chemical Analyser – A New Analytical Technique for SEM. Microscopy Today, 2004, 12, 38-40.	0.2	10

Rapid Analysis of Microbiological Systems Using SERS. , 2006, , 397-408.

#	Article	IF	CITATIONS
379	Explanatory multivariate analysis of ToF-SIMS spectra for the discrimination of bacterial isolates. Analyst, The, 2009, 134, 2352.	1.7	10
380	An overflow of $\hat{a} \in $ what else but metabolism!. Metabolomics, 2010, 6, 1-2.	1.4	10
381	Water, water, every where, but rarely any drop to drink. Metabolomics, 2014, 10, 5-7.	1.4	10
382	A metabolomics investigation into the effects of HIV protease inhibitors on HPV16 E6 expressing cervical carcinoma cells. Molecular BioSystems, 2014, 10, 398-411.	2.9	10
383	A workflow for bacterial metabolic fingerprinting and lipid profiling: application to Ciprofloxacin challenged Escherichia coli. Metabolomics, 2015, 11, 438-453.	1.4	10
384	Untargeted Molecular Analysis of Exhaled Breath as a Diagnostic Test for Ventilator-Associated Lower Respiratory Tract Infections (BreathDx). Thorax, 2022, 77, 79-81.	2.7	10
385	No seven year itch for Metabolomics. Metabolomics, 2012, 8, 1-1.	1.4	9
386	FT-IR spectroscopic investigation of bacterial cell envelopes from Zymomonas mobilis which have different surface hydrophobicities. Vibrational Spectroscopy, 2013, 64, 51-57.	1.2	9
387	Compositional Equivalence of Grain from Multi-trait Drought-Tolerant Maize Hybrids to a Conventional Comparator: Univariate and Multivariate Assessments. Journal of Agricultural and Food Chemistry, 2014, 62, 9597-9608.	2.4	9
388	Partial Least Squares with Structured Output for Modelling the Metabolomics Data Obtained from Complex Experimental Designs: A Study into the Y-Block Coding. Metabolites, 2016, 6, 38.	1.3	9
389	Rapid discrimination of Enterococcus faecium strains using phenotypic analytical techniques. Analytical Methods, 2016, 8, 7603-7613.	1.3	9
390	Metabolic analysis of the response of Pseudomonas putida DOT-T1E strains to toluene using Fourier transform infrared spectroscopy and gas chromatography mass spectrometry. Metabolomics, 2016, 12, 112.	1.4	9
391	Recommendations on the Implementation of Genetic Algorithms for the Directed Evolution of Enzymes for Industrial Purposes. ChemBioChem, 2017, 18, 1087-1097.	1.3	9
392	Realâ€Time Monitoring of Enzyme atalysed Reactions using Deep UV Resonance Raman Spectroscopy. Chemistry - A European Journal, 2017, 23, 6983-6987.	1.7	9
393	Central Metabolism Is Tuned to the Availability of Oxygen in Developing Melon Fruit. Frontiers in Plant Science, 2019, 10, 594.	1.7	9
394	Metabolism in action: stable isotope probing using vibrational spectroscopy and SIMS reveals kinetic and metabolic flux of key substrates. Analyst, The, 2021, 146, 1734-1746.	1.7	9
395	Applying Metabolic Fingerprinting to Ecology: The Use of Fourier-Transform Infrared Spectroscopy for the Rapid Screening of Plant Responses to N Deposition. Water, Air and Soil Pollution, 2004, 4, 251-258.	0.8	8
396	Ethnic differences in male reproductive hormones and relationships with adiposity and insulin resistance in older men. Clinical Endocrinology, 2017, 86, 660-668.	1.2	8

#	Article	IF	CITATIONS
397	Detection and quantification of exhaled volatile organic compounds in mechanically ventilated patients – comparison of two sampling methods. Analyst, The, 2021, 146, 222-231.	1.7	8
398	Assessing the impact of nitrogen supplementation in oats across multiple growth locations and years with targeted phenotyping and high-resolution metabolite profiling approaches. Food Chemistry, 2021, 355, 129585.	4.2	8
399	Functional Exchangeability of Oxidase and Dehydrogenase Reactions in the Biosynthesis of Hydroxyphenylglycine, a Nonribosomal Peptide Building Block. ACS Synthetic Biology, 2015, 4, 796-807.	1.9	7
400	SYNBIOCHEM–a SynBio foundry for the biosynthesis and sustainable production of fine and speciality chemicals. Biochemical Society Transactions, 2016, 44, 675-677.	1.6	7
401	Omics Methods For the Detection of Foodborne Pathogens. , 2019, , 364-370.		7
402	Development of a sensor device with polymer-coated piezoelectric micro-cantilevers for detection of volatile organic compounds. Measurement Science and Technology, 2020, 31, 035103.	1.4	7
403	Phospholipidomics of peripheral blood mononuclear cells (PBMCs): the tricky case of children with autism spectrum disorder (ASD) and their healthy siblings. Analytical and Bioanalytical Chemistry, 2020, 412, 6859-6874.	1.9	7
404	Phenotypic Characterisation of Shewanella oneidensis MR-1 Exposed to X-Radiation. PLoS ONE, 2015, 10, e0131249.	1.1	7
405	Chemometric analyses with self organising feature maps. , 1999, , 335-347.		6
406	UV-B radiation induced changes in litter quality affects earthworm growth and cast characteristics as determined by metabolic fingerprinting. Pedobiologia, 2003, 47, 784-787.	0.5	6
407	Direct infusion electrospray ionization mass spectra of crude cell extracts for microbial characterizations: influence of solvent conditions on the detection of proteins. Rapid Communications in Mass Spectrometry, 2006, 20, 21-30.	0.7	6
408	Clinical Spectroscopy: general discussion. Faraday Discussions, 2016, 187, 429-460.	1.6	6
409	From Multistep Enzyme Monitoring to Whole-Cell Biotransformations: Development of Real-Time Ultraviolet Resonance Raman Spectroscopy. Analytical Chemistry, 2017, 89, 12527-12532.	3.2	6
410	Rapid authentication of animal cell lines using pyrolysis mass spectrometry and auto-associative artificial neural networks. Cytotechnology, 1996, 21, 231-241.	0.7	5
411	Quantitative detection and identification methods for microbial spoilage. , 2006, , 3-27.		5
412	Considerations in Sample Preparation, Collection, and Extraction Approaches Applied in Microbial, Plant, and Mammalian Metabolic Profiling. , 2013, , 79-118.		5
413	Spectral Pathology: general discussion. Faraday Discussions, 2016, 187, 155-186.	1.6	5
414	Metabolomics reveals the physiological response of Pseudomonas putida KT2440 (UWC1) after pharmaceutical exposure. Molecular BioSystems, 2016, 12, 1367-1377.	2.9	5

#	Article	IF	CITATIONS
415	Sensitive and selective detection of DNA fragments associated with Ganoderma boninense by DNA-nanoparticle conjugate hybridisation. Journal of Materials Science, 2020, 55, 14965-14979.	1.7	5
416	A DRASTIC (Diffuse Reflectance Absorbance Spectroscopy Taking in Chemometrics) approach for the rapid analysis of microbial fermentation products: Quantification of aristeromycin and neplanocin A in Streptomyces citricolor broths. Studies in Organic Chemistry, 1998, 53, 185-191.	0.2	4
417	An Improved Fluorescent Amplified Fragment Length Polymorphism Method for Typing Mycobacterium tuberculosis. Journal of Clinical Microbiology, 2006, 44, 288-289.	1.8	4
418	Aseptic Raman spectroscopy can detect changes associated with the culture of human dental pulp stromal cells in osteoinductive culture. Analyst, The, 2015, 140, 7347-7354.	1.7	4
419	Single cell analysis/data handling: general discussion. Faraday Discussions, 2016, 187, 299-327.	1.6	4
420	High resolution techniques: general discussion. Faraday Discussions, 2019, 218, 247-267.	1.6	4
421	<i>The blind men and the elephant</i> : challenges in the analysis of complex natural mixtures. Faraday Discussions, 2019, 218, 524-539.	1.6	4
422	Metabolome and Proteome Profiling for Microbial Characterization. , 2003, , 9-38.		4
423	Raman Spectroscopy for Whole Organism and Tissue Profiling. , 2003, , 95-110.		4
424	Characterisation of intact microorganisms using electrospray ionisation mass spectrometry. , 0, .		4
425	<title>Rapid analysis of microbial systems using vibrational spectroscopy and supervised learning methods: application to the discrimination between methicillin-resistant and methicillin-susceptible Staphy</title> . , 1998, 3257, 220.		3
426	Use of earthworm casts to validate FT-IR spectroscopy as a â€~sentinel' technology for high-throughput monitoring of global changes in microbial ecology. Pedobiologia, 2003, 47, 440-446.	0.5	3
427	UV-B radiation induced changes in litter quality affects earthworm growth and cast characteristics as determined by metabolic fingerprintingThe 7th international symposium on earthworm ecology · Cardiff · Wales · 2002. Pedobiologia, 2003, 47, 784-787.	0.5	3
428	The use of chemical profiling for monitoring metabolic changes in artificial soil slurries caused by horizontal gene transfer. Metabolomics, 2006, 1, 305-315.	1.4	3
429	Evaluation of Sample Preparation Methods for Inter-Laboratory Metabolomics Investigation of Streptomyces lividans TK24. Metabolites, 2020, 10, 379.	1.3	3
430	Assessment of Transdermal Delivery of Topical Compounds in Skin Scarring Using a Novel Combined Approach of Raman Spectroscopy and High-Performance Liquid Chromatography. Advances in Wound Care, 2021, 10, 1-12.	2.6	3
431	Breath and plasma metabolomics to assess inflammation in acute stroke. Scientific Reports, 2021, 11, 21949.	1.6	3
432	DRASTIC(Diffuse Reflectance Absorbance Spectroscopy Taking In Chemometrics). A novel, rapid, hyperspectral, FT-IR-based approach to screening for biocatalytic activity and metabolite overproduction. Studies in Organic Chemistry, 1998, 53, 61-75.	0.2	2

#	Article	IF	CITATIONS
433	A Structural and Chemical Analyser (SCA) Identification of Bacteria Labelled by Metallic Nanoparticles. Microscopy and Microanalysis, 2004, 10, 932-933.	0.2	2
434	Applying metabolic fingerprinting to ecology: The use of Fourier-transform infrared spectroscopy for the rapid screening of plant responses to N deposition. Water, Air and Soil Pollution, 2005, 4, 251-258.	0.8	2
435	Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived metabolomic datasets. Bioinformatics, 2012, 28, 149-149.	1.8	2
436	Data mining and visualisation: general discussion. Faraday Discussions, 2019, 218, 354-371.	1.6	2
437	Comparison of liver and plasma metabolic profiles in piglets of different ages as animal models for paediatric population. Analyst, The, 2020, 145, 6859-6867.	1.7	2
438	Rapid Analysis of Microbiological Systems Using SERS. , 2006, , 397-408.		2
439	Intelligent Systems for the Characterization of Microorganisms from Hyperspectral Data. , 2000, , 111-136.		2
440	Proteome and metabolome analyses for food authentication. , 2003, , 71-100.		2
441	The dogs that did not bark. Trends in Biotechnology, 1994, 12, 434-435.	4.9	1
442	BAS/BSCR3 Partial reconstruction of myocardial metabolic pathways following analysis of peripheral serum using metabolomics in early cardiac ischaemia. Heart, 2010, 96, e13-e13.	1.2	1
443	The devil is in the detail. Metabolomics, 2013, 9, 1-2.	1.4	1
444	Metabolomics Society 2014 Metabolomics Publication Awards. Metabolomics, 2014, 10, 771-771.	1.4	1
445	I spy with my little eye something beginning with â \in ¦ â \in [−] Hâ \in [™] . Metabolomics, 2015, 11, 6-8.	1.4	1
446	Dealing with complexity: general discussion. Faraday Discussions, 2019, 218, 138-156.	1.6	1
447	Future challenges and new approaches: general discussion. Faraday Discussions, 2019, 218, 505-523.	1.6	1
448	Spectral artefacts induced by moving targets in live hyperspectral stimulated Raman spectroscopy: The case of lipid droplets in yeast cells. Clinical Spectroscopy, 2021, 3, 100014.	0.6	1
449	The role of metabolomics in personalized medicine. , 2020, , 227-244.		1
450	NEWS: The 2022 Metabolomics publication awards. Metabolomics, 2022, 18, 22.	1.4	1

#	Article	IF	CITATIONS
451	P-066. Fourier transform infra-red (FT-IR) spectroscopy of follicular fluids from antral follicles. Human Reproduction, 1999, 14, 173-174.	0.4	0
452	<title>Intelligent systems for the characterization and quantification of microbial systems from advanced analytical techniques</title> ., 1999, 3853, 174.		0
453	Artificial neural networks as a tool for whole organism fingerprinting in bacterial taxonomy. , 2001, , 143-172.		0
454	Fingerprint Spectrometry Methods inBacillus Systematics. , 0, , 254-270.		0
455	Food quality and microbial succession in ageing earthworm casts: standard microbial indices and metabolic fingerprinting. Pedobiologia, 2003, 47, 888-894.	0.5	0
456	Enhancing Raman Spectroscopy for the Rapid Characterisation of Microorganisms. Microscopy and Microanalysis, 2004, 10, 1310-1311.	0.2	0
457	NEW IN 2005!. Metabolomics, 2005, 1, 287-287.	1.4	0
458	Understanding the behaviour of pathogenic cells: proteome and metabolome analyses. , 2005, , 3-52.		0
459	High-Throughput Microbial Characterizations Using Electrospray Ionization Mass Spectrometry and Its Role in Functional Genomics. , 2006, , 229-256.		0
460	Discrimination and Identification of Microorganisms by Pyrolysis Mass Spectrometry: From Burning Ambitions to Cooling Embers-A Historical Perspective. , 2006, , 319-343.		0
461	Regression analysis for supply chain logged data: A simulated case study on shelf life prediction. , 2008, , .		0
462	PTU-033â€Serum metabolite profiles differentiate Crohn's disease from ulcerative colitis and from healthy controls. Gut, 2010, 59, A61.2-A61.	6.1	0
463	A Robot Scientist Approach Towards Optimization Of SERS. , 2010, , .		Ο
464	Metabolomics society 2015 Metabolomics publication awards. Metabolomics, 2015, 11, 1035-1035.	1.4	0
465	PWE-199ÂMetabolomic profiling in acute pancreatitis; in search of new biomarkers. Gut, 2015, 64, A299.2-A300.	6.1	0
466	PWE-200ÂMetabolomic profiling in pancreatic cancer; in search of new biomarkers. Gut, 2015, 64, A300.1-A300.	6.1	0
467	PTU-093ÂMetabolomic profiling in inflammatory bowel disease. Gut, 2015, 64, A102.1-A102.	6.1	Ο
468	Metabolic Fingerprinting of Pseudomonas putida DOT-T1E Strains: Understanding the Influence of Divalent Cations in Adaptation Mechanisms Following Exposure to Toluene. Metabolites, 2016, 6, 14.	1.3	0

#	Article	IF	CITATIONS
469	Continued growth, continual progress, and continuous publications. Metabolomics, 2016, 12, 1.	1.4	0
470	Say hello to Dr Warwick Dunn! Metabolomics' new Reviews Editor. Metabolomics, 2016, 12, 1.	1.4	0
471	NEWS: the 2016 Metabolomics publication awards. Metabolomics, 2016, 12, 1.	1.4	0
472	NEWS: the 2018 Metabolomics publication awards. Metabolomics, 2018, 14, 58.	1.4	0
473	Metabolomics would like to thank all our referees for their support in 2018. Metabolomics, 2018, 14, 157.	1.4	0
474	NEWS: the 2019 Metabolomics publication awards. Metabolomics, 2019, 15, 66.	1.4	0
475	The 2020 metabolomics publication awards. Metabolomics, 2020, 16, 55.	1.4	0
476	The 2021 Metabolomics publication awards. Metabolomics, 2021, 17, 35.	1.4	0
477	When Coing Backwards Means Progress: On the Solution of Biochemical Inverse Problems Using Artificial Neural Networks. , 1993, , 109-114.		0
478	Metabolic Fingerprint Analysis of Cytochrome b5-producing E. coli N4830-1 Using FT-IR Spectroscopy. Frontiers in Microbiology, 0, 13, .	1.5	0