Karin A Payne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8248963/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials, 2009, 30, 2499-2506.	5.7	869
2	Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 57, 1-8.	2.0	486
3	Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles. Biomaterials, 2003, 24, 1255-1264.	5.7	351
4	Donor sex and age influence the chondrogenic potential of human femoral bone marrow stem cells. Osteoarthritis and Cartilage, 2010, 18, 705-713.	0.6	136
5	Blocking vascular endothelial growth factor with soluble Fltâ€1 improves the chondrogenic potential of mouse skeletal muscle–derived stem cells. Arthritis and Rheumatism, 2009, 60, 155-165.	6.7	96
6	Osteogenic Potential of Postnatal Skeletal Muscle–Derived Stem Cells Is Influenced by Donor Sex. Journal of Bone and Mineral Research, 2007, 22, 1592-1602.	3.1	72
7	Microgels: Modular, tunable constructs for tissue regeneration. Acta Biomaterialia, 2019, 88, 32-41.	4.1	69
8	Differential Effect of BMP4 on NIH/3T3 and C2C12 Cells: Implications for Endochondral Bone Formation. Journal of Bone and Mineral Research, 2005, 20, 1611-1623.	3.1	55
9	Injectable and microporous scaffold of densely-packed, growth factor-encapsulating chitosan microgels. Carbohydrate Polymers, 2016, 152, 792-801.	5.1	37
10	Minimally Manipulated Bone Marrow Concentrate Compared with Microfracture Treatment of Full-Thickness Chondral Defects. Journal of Bone and Joint Surgery - Series A, 2018, 100, 138-146.	1.4	36
11	Single intra-articular injection of adeno-associated virus results in stable and controllable in vivo transgene expression in normal rat knees. Osteoarthritis and Cartilage, 2011, 19, 1058-1065.	0.6	34
12	Regenerative Medicine Approaches for the Treatment of Pediatric Physeal Injuries. Tissue Engineering - Part B: Reviews, 2018, 24, 85-97.	2.5	34
13	Regenerative medicine in orthopaedic surgery. Journal of Orthopaedic Research, 2007, 25, 1261-1268.	1.2	32
14	Effect of Phosphatidyl Inositol 3-Kinase, Extracellular Signal-Regulated Kinases 1/2, and p38 Mitogen-Activated Protein Kinase Inhibition on Osteogenic Differentiation of Muscle-Derived Stem Cells. Tissue Engineering - Part A, 2010, 16, 3647-3655.	1.6	31
15	Current and novel injectable hydrogels to treat focal chondral lesions: Properties and applicability. Journal of Orthopaedic Research, 2018, 36, 64-75.	1.2	25
16	Photopolymerizable Injectable Cartilage Mimetic Hydrogel for the Treatment of Focal Chondral Lesions: A Proof of Concept Study in a Rabbit Animal Model. American Journal of Sports Medicine, 2019, 47, 212-221.	1.9	24
17	Emulsion-free chitosan–genipin microgels for growth plate cartilage regeneration. Journal of Biomaterials Applications, 2021, 36, 289-296.	1.2	16
18	In vivo degradation rate of alginate–chitosan hydrogels influences tissue repair following physeal injury. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2484-2494.	1.6	14

KARIN A PAYNE

#	Article	IF	CITATIONS
19	A Rat Tibial Growth Plate Injury Model to Characterize Repair Mechanisms and Evaluate Growth Plate Regeneration Strategies. Journal of Visualized Experiments, 2017, , .	0.2	12
20	Malignant Transformation of Multipotent Muscle-Derived Cells by Concurrent Differentiation Signals. Stem Cells, 2007, 25, 2302-2311.	1.4	11
21	Viability and Tissue Quality of Cartilage Flaps From Patients With Femoroacetabular Hip Impingement: A Matched-Control Comparison. Orthopaedic Journal of Sports Medicine, 2017, 5, 232596711772360.	0.8	11
22	Stem and Progenitor Cells for Cartilage Repair: Source, Safety, Evidence, and Efficacy. Operative Techniques in Sports Medicine, 2017, 25, 25-33.	0.2	10
23	Persistence, Localization, and External Control of Transgene Expression After Single Injection of Adeno-Associated Virus into Injured Joints. Human Gene Therapy, 2013, 24, 457-466.	1.4	9
24	The heterogeneous mechanical properties of adolescent growth plate cartilage: A study in rabbit. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 128, 105102.	1.5	8
25	Rabbit Model of Physeal Injury for the Evaluation of Regenerative Medicine Approaches. Tissue Engineering - Part C: Methods, 2019, 25, 701-710.	1.1	7
26	Antiâ€VEGF antibody delivered locally reduces bony bar formation following physeal injury in rats. Journal of Orthopaedic Research, 2021, 39, 1658-1668.	1.2	7
27	Polyelectrolyte Complex Hydrogels with Controlled Mechanics Affect Mesenchymal Stem Cell Differentiation Relevant to Growth Plate Injuries. Macromolecular Bioscience, 2022, 22, .	2.1	7
28	Muscle-Based Gene Therapy and Tissue Engineering for Cartilage and Bone Healing. Current Genomics, 2004, 5, 7-17.	0.7	5
29	Analysis of Physeal Fractures from the United States National Trauma Data Bank. Children, 2022, 9, 914.	0.6	4
30	Understanding the Transcriptomic Landscape to Drive New Innovations in Musculoskeletal Regenerative Medicine. Current Osteoporosis Reports, 2022, 20, 141-152.	1.5	3
31	Fabrication of Size-Controlled and Emulsion-Free Chitosan-Genipin Microgels for Tissue Engineering Applications. Journal of Visualized Experiments, 2022, , .	0.2	3
32	Material properties and strain distribution patterns of bovine growth plate cartilage vary with anatomic location and depth. Journal of Biomechanics, 2022, 134, 111013.	0.9	1
33	Cellular Grafts for Bone Formation. Spine, 2016, 41, S13.	1.0	0