Luise Anne Cullen-McEwen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8248559/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nephron Number, Renal Function, and Arterial Pressure in Aged GDNF Heterozygous Mice. Hypertension, 2003, 41, 335-340.	2.7	159
2	Prenatal corticosterone exposure results in altered AT ₁ /AT ₂ , nephron deficit and hypertension in the rat offspring. Journal of Physiology, 2007, 579, 503-513.	2.9	125
3	Combined prenatal and postnatal protein restriction influences adult kidney structure, function, and arterial pressure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R462-R469.	1.8	102
4	MRI-based glomerular morphology and pathology in whole human kidneys. American Journal of Physiology - Renal Physiology, 2014, 306, F1381-F1390.	2.7	87
5	mTOR-mediated podocyte hypertrophy regulates glomerular integrity in mice and humans. JCI Insight, 2019, 4, .	5.0	69
6	Effects of dexamethasone exposure on rat metanephric development: in vitro and in vivo studies. American Journal of Physiology - Renal Physiology, 2007, 293, F548-F554.	2.7	61
7	Podocyte Number in Children and Adults. Journal of the American Society of Nephrology: JASN, 2015, 26, 2277-2288.	6.1	61
8	Validation of a Three-Dimensional Method for Counting and Sizing Podocytes in Whole Glomeruli. Journal of the American Society of Nephrology: JASN, 2016, 27, 3093-3104.	6.1	59
9	New insights on glomerular hyperfiltration: a Japanese autopsy study. JCI Insight, 2017, 2, .	5.0	57
10	Altered Ureteric Branching Morphogenesis and Nephron Endowment in Offspring of Diabetic and Insulin-Treated Pregnancy. PLoS ONE, 2013, 8, e58243.	2.5	55
11	Human podocyte depletion in association with older age and hypertension. American Journal of Physiology - Renal Physiology, 2016, 310, F656-F668.	2.7	55
12	The Where, What and Why of the Developing Renal Stroma. Nephron Experimental Nephrology, 2005, 99, e1-e8.	2.2	49
13	Estimating Total Nephron Number in the Adult Kidney Using the Physical Disector/Fractionator Combination. Methods in Molecular Biology, 2012, 886, 333-350.	0.9	46
14	A design-based method for estimating glomerular number in the developing kidney. American Journal of Physiology - Renal Physiology, 2011, 300, F1448-F1453.	2.7	42
15	Transgenerational programming of fetal nephron deficits and sex-specific adult hypertension in rats. Reproduction, Fertility and Development, 2014, 26, 1032.	0.4	35
16	Why and how we determine nephron number. Pediatric Nephrology, 2014, 29, 575-580.	1.7	35
17	Estimating Nephron Number in the Developing Kidney Using the Physical Disector/Fractionator Combination. Methods in Molecular Biology, 2012, 886, 109-119.	0.9	25
18	Mechanism of alcoholâ€induced impairment in renal development: Could it be reduced by retinoic acid?. Clinical and Experimental Pharmacology and Physiology, 2012, 39, 807-813.	1.9	24

#	Article	IF	CITATIONS
19	Maternal glucose intolerance reduces offspring nephron endowment and increases glomerular volume in adult offspring. Diabetes/Metabolism Research and Reviews, 2016, 32, 816-826.	4.0	19
20	Maternal Fat Feeding Augments Offspring Nephron Endowment in Mice. PLoS ONE, 2016, 11, e0161578.	2.5	17
21	Renal dysfunction in early adulthood following birth asphyxia in male spiny mice, and its amelioration by maternal creatine supplementation during pregnancy. Pediatric Research, 2017, 81, 646-653.	2.3	14
22	Quantitation of 3D ureteric branching morphogenesis in cultured embryonic mouse kidney. International Journal of Developmental Biology, 2002, 46, 1049-55.	0.6	14
23	Podometrics in Japanese Living Donor Kidneys: Associations with Nephron Number, Age, and Hypertension. Journal of the American Society of Nephrology: JASN, 2021, 32, 1187-1199.	6.1	13
24	Maternal hypoxia developmentally programs low podocyte endowment in male, but not female offspring. Anatomical Record, 2020, 303, 2668-2678.	1.4	12
25	Glomerular surface area is normalized in mice born with a nephron deficit: no role for AT1 receptors. American Journal of Physiology - Renal Physiology, 2009, 296, F583-F589.	2.7	11
26	Podocyte endowment and the impact of adult body size on kidney health. American Journal of Physiology - Renal Physiology, 2021, 321, F322-F334.	2.7	10
27	Moderate prenatal ethanol exposure in the rat promotes kidney cell apoptosis, nephron deficits, and sexâ€specific kidney dysfunction in adult offspring. Anatomical Record, 2020, 303, 2632-2645.	1.4	6
28	Transforming growth factor-beta superfamily members: roles in branching morphogenesis in the kidney. Nephrology, 2001, 6, 274-284.	1.6	4
29	Impaired <scp>SIRT</scp> 1 activity leads to diminution in glomerular endowment without accelerating ageâ€associated <scp>GFR</scp> decline. Physiological Reports, 2019, 7, e14044.	1.7	4
30	Analysis of structure and gene expression in developing kidneys of male and female rats exposed to low protein diets in utero. Anatomical Record, 2020, 303, 2657-2667.	1.4	4
31	Normal foetal kidney volume in offspring of women treated for gestational diabetes. Endocrinology, Diabetes and Metabolism, 2019, 2, e00091.	2.4	3
32	The ability of remaining glomerular podocytes to adapt to the loss of their neighbours decreases with age. Cell and Tissue Research, 2022, 388, 439-451.	2.9	3
33	Imaging Tools for Analysis of the Ureteric Tree in the Developing Mouse Kidney. Methods in Molecular Biology, 2014, 1075, 305-320.	0.9	2