Leandro Martins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8248538/publications.pdf Version: 2024-02-01

FANDRO MARTINS

#	Article	IF	CITATIONS
1	Reduced deactivation of mechanochemically delaminated hierarchical zeolite MCM-22 catalysts during 4-propylphenol cracking. Journal of Catalysis, 2022, 411, 187-192.	6.2	9
2	Sol-gel synthesis of nanocrystalline MgO and its application as support in Ni/MgO catalysts for ethanol steam reforming. Applied Surface Science, 2021, 542, 148744.	6.1	21
3	Insights into the Preparation of Copper Catalysts Supported on Layered Double Hydroxide Derived Mixed Oxides for Ethanol Dehydrogenation. ACS Applied Materials & Interfaces, 2021, 13, 26001-26012.	8.0	19
4	Progress of the Catalytic Deactivation of Hâ€ZSMâ€5 Zeolite in Glycerol Dehydration. ChemCatChem, 2021, 13, 4419-4430.	3.7	10
5	Controlling the porosity and crystallinity of MgO catalysts by addition of surfactant in the sol-gel synthesis. Catalysis Today, 2020, 344, 52-58.	4.4	11
6	Activation of Mo and V oxides supported on ZSM-5 zeolite catalysts followed by in situ XAS and XRD and their uses in oxydehydration of glycerol. Molecular Catalysis, 2020, 481, 110158.	2.0	13
7	Preparation of hydrophobic MFI zeolites containing hierarchical micro-mesopores using seeds functionalized with octyltriethoxysilane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124109.	4.7	12
8	Insights into Redox Dynamics of Vanadium Species Impregnated in Layered Siliceous Zeolitic Structures during Methanol Oxidation Reactions. ChemCatChem, 2020, 12, 141-151.	3.7	8
9	Evolution of Structure and Active Sites during the Synthesis of ZSM-5: From Amorphous to Fully Grown Structure. Journal of Physical Chemistry C, 2020, 124, 2439-2449.	3.1	15
10	Synthesis and characterization of chromium silicate catalyst and its application in the gas phase glycerol transformation into acetaldehyde. Inorganic Chemistry Communication, 2020, 112, 107710.	3.9	10
11	Hydrophobic-hydrophilic balance of ZSM-5 zeolites on the two-phase ketalization of glycerol with acetone. Catalysis Today, 2020, , .	4.4	11
12	Liquid crystals as pore template for sulfated zirconia. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600, 124907.	4.7	0
13	Exploring the multifunctionality and accessibility of vanadosilicates to produce acrylic acid in one-pot glycerol oxydehydration. Applied Catalysis A: General, 2020, 602, 117687.	4.3	9
14	Acidic V-MCM-41 catalysts for the liquid-phase ketalization of glycerol with acetone. Microporous and Mesoporous Materials, 2019, 273, 219-225.	4.4	31
15	Catalytic hydrogenation of dihydrolevoglucosenone to levoglucosanol with a hydrotalcite/mixed oxide copper catalyst. Green Chemistry, 2019, 21, 5000-5007.	9.0	18
16	Ethanol dehydrogenative reactions catalyzed by copper supported on porous Al–Mg mixed oxides. RSC Advances, 2019, 9, 3294-3302.	3.6	10
17	Ethanol condensation at elevated pressure over copper on AlMgO and AlCaO porous mixed-oxide supports. Catalysis Science and Technology, 2019, 9, 2032-2042.	4.1	25
18	Vanadosilicate with MWW zeolite structure synthesized from VCl3 by cooperative assembly of organic templates. Microporous and Mesoporous Materials, 2019, 279, 252-261.	4.4	4

LEANDRO MARTINS

#	Article	IF	CITATIONS
19	Organosilane-Assisted Synthesis of Hierarchical MCM-22 Zeolites for Condensation of Glycerol into Bulky Products. Crystal Growth and Design, 2019, 19, 231-241.	3.0	15
20	Catalytic performance of texturally improved Al–Mg mixed oxides derived from emulsion-synthesized hydrotalcites. RSC Advances, 2018, 8, 6039-6046.	3.6	3
21	Surfactant-assisted synthesis of Mo–V mixed oxide catalysts for upgraded one-step conversion of glycerol to acrylic acid. RSC Advances, 2018, 8, 11975-11982.	3.6	14
22	Studies on dispersion and reactivity of vanadium oxides deposited on lamellar ferrierite zeolites for condensation of glycerol into bulky products. Molecular Catalysis, 2018, 458, 161-170.	2.0	25
23	<i>Operando</i> XAS/Raman/MS monitoring of ethanol steam reforming reaction–regeneration cycles. Catalysis Science and Technology, 2018, 8, 6297-6301.	4.1	17
24	Effect of different seed sources on the hydrothermal crystallization of MCM-22 zeolite catalysts. CrystEngComm, 2018, 20, 3467-3475.	2.6	8
25	CO oxidation over Co-catalysts supported on silica-titania – The effects of the catalyst preparation method and the amount of incorporated Ti on the formation of more active Co3+ species. Applied Catalysis A: General, 2018, 565, 152-162.	4.3	8
26	Hydrothermal synthesis of Mo-V mixed oxides possessing several crystalline phases and their performance in the catalytic oxydehydration of glycerol to acrylic acid. Catalysis Today, 2017, 296, 10-18.	4.4	24
27	Correlation of Sol–Gel Alumina‣upported Cobalt Catalyst Processing to Cobalt Speciation, Ethanol Steam Reforming Activity, and Stability. ChemCatChem, 2017, 9, 3918-3929.	3.7	21
28	Thermal treatments of precursors of molybdenum and vanadium oxides and the formed Mo x V y O z phases active in the oxydehydration of glycerol. Applied Catalysis A: General, 2017, 532, 1-11.	4.3	27
29	Emulsion-mediated synthesis of hierarchical mesoporous-macroporous Al-Mg hydrotalcites. Microporous and Mesoporous Materials, 2017, 240, 149-158.	4.4	8
30	The multiple benefits of glycerol conversion to acrolein and acrylic acid catalyzed by vanadium oxides supported on micro-mesoporous MFI zeolites. Catalysis Today, 2017, 289, 20-28.	4.4	35
31	One-step oxidehydration of glycerol to acrylic acid using ETS-10-like vanadosilicates. Microporous and Mesoporous Materials, 2016, 232, 151-160.	4.4	32
32	Effects of crystal size, acidity, and synthesis procedure on the catalytic performance of gallium and aluminum MFI zeolites in glycerol dehydration. Journal of Molecular Catalysis A, 2016, 422, 148-157.	4.8	48
33	Time-resolved XAS/MS/Raman monitoring of mutual copper self-reduction and ethanol dehydrogenation reactions. RSC Advances, 2016, 6, 20453-20457.	3.6	28
34	Sulfated zirconia foams synthesized by integrative route combining surfactants, air bubbles and sol–gel transition applied to heterogeneous catalysis. RSC Advances, 2016, 6, 6686-6694.	3.6	14
35	Correlation between Structural and Catalytic Properties of Copper Supported on Porous Alumina for the Ethanol Dehydrogenation Reaction. ChemCatChem, 2015, 7, 1668-1677.	3.7	46
36	One-step glycerol oxidehydration to acrylic acid on multifunctional zeolite catalysts. Applied Catalysis A: General, 2015, 492, 243-251.	4.3	66

LEANDRO MARTINS

#	Article	IF	CITATIONS
37	Glycerol dehydration catalyzed by MWW zeolites and the changes in the catalyst deactivation caused by porosity modification. Applied Catalysis A: General, 2015, 495, 84-91.	4.3	52
38	SEED-ASSISTED BEHAVIOR OF ZEOLITE CRYSTALLIZATION. Quimica Nova, 2014, , .	0.3	2
39	Effect of the balance between Co(II) and Co(0) oxidation states on the catalytic activity of cobalt catalysts for Ethanol Steam Reforming. Catalysis Today, 2014, 229, 88-94.	4.4	50
40	Structure and catalytic properties of sulfated zirconia foams. Journal of Sol-Gel Science and Technology, 2014, 72, 252-259.	2.4	6
41	Multivariate curve resolution analysis applied to time-resolved synchrotron X-ray Absorption Spectroscopy monitoring of the activation of copper alumina catalyst. Catalysis Today, 2014, 229, 114-122.	4.4	108
42	Textured macro- and mesoporous alumina samples designed in the presence of different surfactant types. Journal of Sol-Gel Science and Technology, 2014, 71, 9-15.	2.4	6
43	Design of microstructure of zirconia foams from the emulsion template properties. Soft Matter, 2013, 9, 550-558.	2.7	23
44	A comparative study of glycerol dehydration catalyzed by micro/mesoporous MFI zeolites. Journal of Catalysis, 2013, 300, 102-112.	6.2	131
45	elective catalytic reduction of NO with propane on V2O5/SiO2, V2O5/TiO2, and V2O5/Al2O3 catalysts obtained through the sol-gel method. Acta Scientiarum - Technology, 2013, 35, .	0.4	6
46	Design of hierarchical porous aluminas by using one-pot synthesis and different calcination temperatures. Journal of Sol-Gel Science and Technology, 2012, 63, 242-250.	2.4	13
47	Preparation and Use of Organic-Inorganic Hybrid Ion Exchangers in Catalysis. , 2012, , 453-465.		0
48	Construção de uma câmara para monitoramento in situ do processo de secagem de geis e sólidos porosos. Quimica Nova, 2011, 34, 1455-1458.	0.3	4
49	Efficiency of ethanol conversion induced by controlled modification of pore structure and acidic properties of alumina catalysts. Applied Catalysis A: General, 2011, 398, 59-65.	4.3	28
50	Preparation of hierarchically structured porous aluminas by a dual soft template method. Microporous and Mesoporous Materials, 2010, 132, 268-275.	4.4	36
51	Preparation of different basic Si–MCM-41 catalysts and application in the Knoevenagel and Claisen–Schmidt condensation reactions. Journal of Catalysis, 2010, 271, 220-227.	6.2	69
52	Preparação e propriedades de zeólitas faujasita contendo cátions amônio. Quimica Nova, 2010, 33, 1077-1081.	0.3	5
53	Basic catalytic properties of as-synthesized molecular sieves. Microporous and Mesoporous Materials, 2009, 120, 206-213.	4.4	30
54	Basic catalyzed Knoevenagel condensation by FAU zeolites exchanged with alkylammonium cations. Catalysis Today, 2008, 133-135, 706-710.	4.4	44

LEANDRO MARTINS

#	Article	IF	CITATIONS
55	Methylammonium-FAU zeolite: Investigation of the basic sites in base catalyzed reactions and its performance. Journal of Catalysis, 2008, 258, 14-24.	6.2	33
56	Basic catalysis by surfactant containing MCM-41. Studies in Surface Science and Catalysis, 2007, 165, 761-764.	1.5	1
57	Redução catalÃŧica seletiva de óxidos de nitrogênio sobre hematita contendo cobre. Quimica Nova, 2007, 30, 611-615.	0.3	0
58	Influence of surfactant chain length on basic catalytic properties of Si-MCM-41. Microporous and Mesoporous Materials, 2007, 106, 8-16.	4.4	48
59	Ion exchange and catalytic properties of methylammonium FAU zeolite. Microporous and Mesoporous Materials, 2007, 98, 166-173.	4.4	33
60	Cu and Co exchanged ZSM-5 zeolites: activity towards no reduction and hydrocarbon oxidation. Quimica Nova, 2006, 29, 223-229.	0.3	14
61	Aplicação catalÃŧica de peneiras moleculares básicas micro e mesoporosas. Quimica Nova, 2006, 29, 358-364.	0.3	23
62	Surfactant containing Si-MCM-41: An efficient basic catalyst for the Knoevenagel condensation. Applied Catalysis A: General, 2006, 312, 77-85.	4.3	63
63	Secondary crystallization of SBA-15 pore walls into microporous material with MFI structure. Catalysis Today, 2005, 107-108, 759-767.	4.4	18
64	Selective catalytic reduction of NO to N2 with copper and cobalt exchanged ZSM-5 zeolites: the effect of calcium addition. Journal of the Brazilian Chemical Society, 2005, 16, 589-596.	0.6	8
65	Produção de etilenoglicóis e derivados por reações catalÃŧicas do óxido de eteno. Quimica Nova, 2005, 28, 264-273.	0.3	4
66	Porosity of CHA Zeolite Driving the Formation of Polyaromatic Coke Species in the Methanol to Olefins Reaction. Journal of the Brazilian Chemical Society, 0, , .	0.6	2