Jong-gu Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8248336/publications.pdf

Version: 2024-02-01

567281 642732 23 636 15 23 h-index citations g-index papers 23 23 23 736 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The synergistic effect of fluorination and embedded SnO2 on the NO gas sensing of expanded graphite. Materials Research Bulletin, 2019, 116, 44-49.	5.2	7
2	Effects of pressure-controlled reaction and blending of PFO and FCC-DO for mesophase pitch. Carbon Letters, 2019, 29, 203-212.	5.9	13
3	Empirical study of petroleum-based pitch production via pressure- and temperature-controlled thermal reactions. Journal of Industrial and Engineering Chemistry, 2018, 62, 176-184.	5 . 8	19
4	Investigation of the growth and in situ heating transmission electron microscopy analysis of Ag2S-catalyzed ZnS nanowires. Applied Surface Science, 2018, 436, 556-561.	6.1	11
5	Controlling the electrochemical properties of an anode prepared from pitch-based soft carbon for Li-ion batteries. Journal of Industrial and Engineering Chemistry, 2017, 45, 99-104.	5 . 8	17
6	Electrochemical and structural properties of lithium battery anode materials by using a molecular weight controlled pitch derived from petroleum residue. Journal of Industrial and Engineering Chemistry, 2016, 41, 1-9.	5.8	36
7	Empirical approach to determine molecular weight distribution using MALDI-TOF analysis of petroleum-based heavy oil. Fuel, 2016, 186, 20-23.	6.4	21
8	Characterization of pitch derived from pyrolyzed fuel oil using TLC-FID and MALDI-TOF. Fuel, 2016, 167, 25-30.	6.4	45
9	Synthesis and its characterization of pitch from pyrolyzed fuel oil (PFO). Journal of Industrial and Engineering Chemistry, 2016, 36, 293-297.	5. 8	40
10	A mesoporous WO 3â^'X /graphene composite as a high-performance Li-ion battery anode. Applied Surface Science, 2014, 316, 604-609.	6.1	36
11	Boron-doped carbon prepared from PFO as a lithium-ion battery anode. Solid State Sciences, 2014, 34, 38-42.	3.2	17
12	Effects of Pore Structure on the High-Performance Capacitive Deionization Using Chemically Activated Carbon Nanofibers. Journal of Nanoscience and Nanotechnology, 2014, 14, 2268-2273.	0.9	7
13	The electrochemical behavior of an enzyme biosensor electrode using an oxyfluorinated pitch-based carbon. Journal of Industrial and Engineering Chemistry, 2013, 19, 94-98.	5. 8	12
14	The effects of carbon nanotube addition and oxyfluorination on the glucose-sensing capabilities of glucose oxidase-coated carbon fiber electrodes. Applied Surface Science, 2012, 258, 2219-2225.	6.1	19
15	Effects of carbon structure orientation on the performance of glucose sensors fabricated from electrospun carbon fibers. Journal of Non-Crystalline Solids, 2012, 358, 544-549.	3.1	13
16	Effects of oxyfluorination on a multi-walled carbon nanotube electrode for a high-performance glucose sensor. Journal of Industrial and Engineering Chemistry, 2012, 18, 674-679.	5.8	21
17	Effect of heat treatment on ZrO2-embedded electrospun carbon fibers used for efficient electromagnetic interference shielding. Journal of Physics and Chemistry of Solids, 2011, 72, 1175-1179.	4.0	37
18	Surface modification of electrospun spherical activated carbon for a high-performance biosensor electrode. Sensors and Actuators B: Chemical, 2011, 158, 151-158.	7.8	17

#	Article	IF	CITATION
19	The hydrogen storage capacity of metal-containing polyacrylonitrile-based electrospun carbon nanofibers. Carbon Letters, 2011, 12, 171-176.	5.9	12
20	Influence of oxyfluorination on activated carbon nanofibers for CO ₂ storage. Carbon Letters, 2011, 12, 236-242.	5.9	19
21	Effective electromagnetic interference shielding by electrospun carbon fibers involving Fe2O3/BaTiO3/MWCNT additives. Materials Chemistry and Physics, 2010, 124, 434-438.	4.0	46
22	Enhanced adhesion and dispersion of carbon nanotube in PANI/PEO electrospun fibers for shielding effectiveness of electromagnetic interference. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 364, 151-157.	4.7	46
23	Fluorination effects of carbon black additives for electrical properties and EMI shielding efficiency by improved dispersion and adhesion. Carbon, 2009, 47, 2640-2647.	10.3	125