Peng Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8247931/peng-zhang-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

46
papers

5,834
citations

46
papers

6,675
ext. papers

5,834
papers

14
citations

14
avg, IF

L-index

#	Paper	IF	Citations
46	Unraveling the rate-limiting step of two-electron transfer electrochemical reduction of carbon dioxide <i>Nature Communications</i> , 2022 , 13, 803	17.4	8
45	Performance Prediction of Multiple Photoanodes Systems for Unbiased Photoelectrochemical Water Splitting 2021 , 3, 939-946		2
44	Fabrication of Heterostructured Fe2TiO5IIiO2 Nanocages with Enhanced Photoelectrochemical Performance for Solar Energy Conversion. <i>Angewandte Chemie</i> , 2020 , 132, 8205-8209	3.6	21
43	Fabrication of Heterostructured Fe TiO -TiO Nanocages with Enhanced Photoelectrochemical Performance for Solar Energy Conversion. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8128-81	132.4	39
42	Nitrogen-Doped Cobalt Pyrite Yolk-Shell Hollow Spheres for Long-Life Rechargeable Zn-Air Batteries. <i>Advanced Science</i> , 2020 , 7, 2001178	13.6	103
41	Fabrication of CdS Frame-in-Cage Particles for Efficient Photocatalytic Hydrogen Generation under Visible-Light Irradiation. <i>Advanced Materials</i> , 2020 , 32, e2004561	24	53
40	Design of Heterostructured Hollow Photocatalysts for Solar-to-Chemical Energy Conversion. <i>Advanced Materials</i> , 2019 , 31, e1900281	24	191
39	Construction of CoO/Co-Cu-S Hierarchical Tubular Heterostructures for Hybrid Supercapacitors. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 15441-15447	16.4	217
38	Construction of Hierarchical Co-Fe Oxyphosphide Microtubes for Electrocatalytic Overall Water Splitting. <i>Advanced Science</i> , 2019 , 6, 1900576	13.6	155
37	Fabrication of CdS hierarchical multi-cavity hollow particles for efficient visible light CO2 reduction. Energy and Environmental Science, 2019 , 12, 164-168	35.4	156
36	Ultrasmall MoO Clusters as a Novel Cocatalyst for Photocatalytic Hydrogen Evolution. <i>Advanced Materials</i> , 2019 , 31, e1804883	24	82
35	Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. <i>Science Advances</i> , 2018 , 4, eaao6657	14.3	344
34	Facile Synthesis of Multi-shelled ZnS-CdS Cages with Enhanced Photoelectrochemical Performance for Solar Energy Conversion. <i>CheM</i> , 2018 , 4, 162-173	16.2	170
33	Current Mechanistic Understanding of Surface Reactions over Water-Splitting Photocatalysts. <i>CheM</i> , 2018 , 4, 223-245	16.2	68
32	Simple Doping, Great Deal: Regulation of Lattice Oxygen for Water Splitting. <i>CheM</i> , 2018 , 4, 2739-2741	16.2	5
31	Construction of Heterostructured Fe O -TiO Microdumbbells for Photoelectrochemical Water Oxidation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15076-15080	16.4	97
30	Formation of Double-Shelled Zinc-Cobalt Sulfide Dodecahedral Cages from Bimetallic Zeolitic Imidazolate Frameworks for Hybrid Supercapacitors. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 7141-7145	16.4	326

(2014-2016)

29	Synergistic Cocatalytic Effect of Carbon Nanodots and Co3 O4 Nanoclusters for the Photoelectrochemical Water Oxidation on Hematite. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 5851-5	16.4	153	
28	Passivation of surface states by ALD-grown TiO2 overlayers on Ta3N5 anodes for photoelectrochemical water oxidation. <i>Chemical Communications</i> , 2016 , 52, 8806-9	5.8	37	
27	Self-Assembly of Shaped Nanoparticles into Free-Standing 2D and 3D Superlattices. <i>Small</i> , 2016 , 12, 499-505	11	19	
26	Stable Aqueous Photoelectrochemical CO2 Reduction by a Cu2 O Dark Cathode with Improved Selectivity for Carbonaceous Products. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8840-5	16.4	135	
25	Spatial separation of oxidation and reduction co-catalysts for efficient charge separation: Pt@TiO@MnO hollow spheres for photocatalytic reactions. <i>Chemical Science</i> , 2016 , 7, 890-895	9.4	111	
24	Effective Charge Carrier Utilization in Photocatalytic Conversions. <i>Accounts of Chemical Research</i> , 2016 , 49, 911-21	24.3	200	
23	Hollow spherical titanium dioxide nanoparticles for energy and environmental applications. <i>Particuology</i> , 2015 , 22, 13-23	2.8	21	
22	Enhanced Surface Reaction Kinetics and Charge Separation of p-n Heterojunction Co3O4/BiVO4 Photoanodes. <i>Journal of the American Chemical Society</i> , 2015 , 137, 8356-9	16.4	611	
21	Monoclinic WO3 nanomultilayers with preferentially exposed (002) facets for photoelectrochemical water splitting. <i>Nano Energy</i> , 2015 , 11, 189-195	17.1	128	
20	Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting. <i>Nanoscale</i> , 2015 , 7, 77-81	7.7	115	
19	Mechanistic Understanding of the Plasmonic Enhancement for Solar Water Splitting. <i>Advanced Materials</i> , 2015 , 27, 5328-42	24	301	
18	Bridging the transport pathway of charge carriers in a Ta3N5 nanotube array photoanode for solar water splitting. <i>Nanoscale</i> , 2015 , 7, 13153-8	7.7	41	
17	Gold Nanorod@TiO2 Yolk-Shell Nanostructures for Visible-Light-Driven Photocatalytic Oxidation of Benzyl Alcohol. <i>Small</i> , 2015 , 11, 1892-9	11	92	
16	Monoclinic porous BiVO4 networks decorated by discrete g-C3N4 nano-islands with tunable coverage for highly efficient photocatalysis. <i>Small</i> , 2014 , 10, 2783-90, 2741	11	187	
15	Facile synthesis of ZnO nanopencil arrays for photoelectrochemical water splitting. <i>Nano Energy</i> , 2014 , 7, 143-150	17.1	66	
14	Controllable synthesis of nanotube-type graphitic C3N4 and their visible-light photocatalytic and fluorescent properties. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 2885	13	223	
13	Reduced Graphene Oxide (rGO)/BiVO4 Composites with Maximized Interfacial Coupling for Visible Lght Photocatalysis. <i>ACS Sustainable Chemistry and Engineering</i> , 2014 , 2, 2253-2258	8.3	140	
12	Tantalum-based semiconductors for solar water splitting. <i>Chemical Society Reviews</i> , 2014 , 43, 4395-422	58.5	360	

11	dering of Gold Nanorods in Confined Spaces by Directed Assembly. <i>Macromolecules</i> , 2013 , 46, 2241-22/48		69
10	Dendritic Au/TiOlhanorod arrays for visible-light driven photoelectrochemical water splitting. Nanoscale, 2013 , 5, 9001-9	7.7	211
9	Selective deposition of AgBOlbn monoclinic BiVO(D40) for highly efficient photocatalysis. <i>Small</i> , 2013 , 9, 3951-6, 3950	11	200
8	Mesoporous anatase TiO2 nanocups with plasmonic metal decoration for highly active visible-light photocatalysis. <i>Chemical Communications</i> , 2013 , 49, 5817-9	5.8	96
7	Near-infrared light-responsive vesicles of Au nanoflowers. <i>Chemical Communications</i> , 2013 , 49, 576-8	5.8	53
6	Ultrasound assisted interfacial synthesis of gold nanocones. <i>Chemical Communications</i> , 2013 , 49, 987-9	5.8	27
5	Asymmetric organic/metal(oxide) hybrid nanoparticles: synthesis and applications. <i>Nanoscale</i> , 2013 , 5, 5151-66	7.7	42
4	Superior reactivity of skeletal Ni-based catalysts for low-temperature steam reforming to produce CO-free hydrogen. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 3295-8	3.6	31
3	On the origin of reactivity of steam reforming of ethylene glycol on supported Ni catalysts. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 4066-9	3.6	35
2	A general approach to synthesize asymmetric hybrid nanoparticles by interfacial reactions. <i>Journal of the American Chemical Society</i> , 2012 , 134, 3639-42	16.4	66
1	Facile synthesis of functional Au nanopatches and nanocups. <i>Chemical Communications</i> , 2012 , 48, 7344-	6 5.8	27