List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8247890/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Double-Network Hydrogels with Extremely High Mechanical Strength. Advanced Materials, 2003, 15, 1155-1158.	11.1	3,537
2	Why are double network hydrogels so tough?. Soft Matter, 2010, 6, 2583.	1.2	1,750
3	Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nature Materials, 2013, 12, 932-937.	13.3	1,636
4	High Mechanical Strength Double-Network Hydrogel with Bacterial Cellulose. Advanced Functional Materials, 2004, 14, 1124-1128.	7.8	635
5	Super tough double network hydrogels and their application as biomaterials. Polymer, 2012, 53, 1805-1822.	1.8	611
6	Large Strain Hysteresis and Mullins Effect of Tough Double-Network Hydrogels. Macromolecules, 2007, 40, 2919-2927.	2.2	573
7	Oppositely Charged Polyelectrolytes Form Tough, Selfâ€Healing, and Rebuildable Hydrogels. Advanced Materials, 2015, 27, 2722-2727.	11.1	545
8	Mechanoresponsive self-growing hydrogels inspired by muscle training. Science, 2019, 363, 504-508.	6.0	526
9	Soft and Wet Materials: Polymer Gels. Advanced Materials, 1998, 10, 827-837.	11.1	519
10	Tough Physical Doubleâ€Network Hydrogels Based on Amphiphilic Triblock Copolymers. Advanced Materials, 2016, 28, 4884-4890.	11.1	442
11	Friction and lubrication of hydrogels—its richness and complexity. Soft Matter, 2006, 2, 544-552.	1.2	357
12	Materials both Tough and Soft. Science, 2014, 344, 161-162.	6.0	341
13	Lamellar Bilayers as Reversible Sacrificial Bonds To Toughen Hydrogel: Hysteresis, Self-Recovery, Fatigue Resistance, and Crack Blunting. Macromolecules, 2011, 44, 8916-8924.	2.2	322
14	Biomechanical properties of high-toughness double network hydrogels. Biomaterials, 2005, 26, 4468-4475.	5.7	288
15	Determination of Fracture Energy of High Strength Double Network Hydrogels. Journal of Physical Chemistry B, 2005, 109, 11559-11562.	1.2	261
16	True Chemical Structure of Double Network Hydrogels. Macromolecules, 2009, 42, 2184-2189.	2.2	258
17	Unidirectional Alignment of Lamellar Bilayer in Hydrogel: Oneâ€Dimensional Swelling, Anisotropic Modulus, and Stress/Strain Tunable Structural Color. Advanced Materials, 2010, 22, 5110-5114. 	11.1	256
18	Microgel-Reinforced Hydrogel Films with High Mechanical Strength and Their Visible Mesoscale Fracture Structure. Macromolecules, 2011, 44, 7775-7781.	2.2	248

#	Article	IF	CITATIONS
19	A Facile Method to Fabricate Anisotropic Hydrogels with Perfectly Aligned Hierarchical Fibrous Structures. Advanced Materials, 2018, 30, 1704937.	11.1	244
20	Necking Phenomenon of Double-Network Gels. Macromolecules, 2006, 39, 4641-4645.	2.2	235
21	Tough Hydrogels with Fast, Strong, and Reversible Underwater Adhesion Based on a Multiscale Design. Advanced Materials, 2018, 30, e1801884.	11.1	235
22	Synthesis of Hydrogels with Extremely Low Surface Friction. Journal of the American Chemical Society, 2001, 123, 5582-5583.	6.6	229
23	Doubleâ€Network Hydrogels Strongly Bondable to Bones by Spontaneous Osteogenesis Penetration. Advanced Materials, 2016, 28, 6740-6745.	11.1	225
24	Stimuli-responsive polymer gels and their application to chemomechanical systems. Progress in Polymer Science, 1993, 18, 187-226.	11.8	214
25	Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels. Nature Communications, 2014, 5, 4659.	5.8	210
26	Adjacent cationic–aromatic sequences yield strong electrostatic adhesion of hydrogels in seawater. Nature Communications, 2019, 10, 5127.	5.8	202
27	Structural Characteristics of Double Network Gels with Extremely High Mechanical Strength. Macromolecules, 2004, 37, 5370-5374.	2.2	198
28	Characterization of internal fracture process of double network hydrogels under uniaxial elongation. Soft Matter, 2013, 9, 1955-1966.	1.2	195
29	Self-Healing Behaviors of Tough Polyampholyte Hydrogels. Macromolecules, 2016, 49, 4245-4252.	2.2	191
30	Fabrication of Bioinspired Hydrogels: Challenges and Opportunities. Macromolecules, 2020, 53, 2769-2782.	2.2	185
31	Bioinspired Underwater Adhesives. Advanced Materials, 2021, 33, e2102983.	11.1	178
32	Effect of Polymer Entanglement on the Toughening of Double Network Hydrogels. Journal of Physical Chemistry B, 2005, 109, 16304-16309.	1.2	177
33	A Universal Molecular Stent Method to Toughen any Hydrogels Based on Double Network Concept. Advanced Functional Materials, 2012, 22, 4426-4432.	7.8	175
34	Transition between Phantom and Affine Network Model Observed in Polymer Gels with Controlled Network Structure. Macromolecules, 2013, 46, 1035-1040.	2.2	172
35	Titration Behavior and Spectral Transitions of Water-Soluble Polythiophene Carboxylic Acids. Macromolecules, 1999, 32, 3964-3969.	2.2	171
36	Mechanically Strong Hydrogels with Ultra-Low Frictional Coefficients. Advanced Materials, 2005, 17, 535-538.	11.1	166

#	Article	IF	CITATIONS
37	Inorganic/Organic Doubleâ€Network Gels Containing Ionic Liquids. Advanced Materials, 2017, 29, 1704118.	11.1	165
38	Selfâ€Adjustable Adhesion of Polyampholyte Hydrogels. Advanced Materials, 2015, 27, 7344-7348.	11.1	160
39	Gel friction: A model based on surface repulsion and adsorption. Journal of Chemical Physics, 1998, 109, 8062-8068.	1.2	157
40	A Novel Doubleâ€Network Hydrogel Induces Spontaneous Articular Cartilage Regeneration <i>in vivo</i> in a Large Osteochondral Defect. Macromolecular Bioscience, 2009, 9, 307-316.	2.1	157
41	Direct Observation of Damage Zone around Crack Tips in Double-Network Gels. Macromolecules, 2009, 42, 3852-3855.	2.2	156
42	Proteoglycans and Glycosaminoglycans Improve Toughness of Biocompatible Double Network Hydrogels. Advanced Materials, 2014, 26, 436-442.	11.1	155
43	Lamellar Hydrogels with High Toughness and Ternary Tunable Photonic Stopâ€Band. Advanced Materials, 2013, 25, 3106-3110.	11.1	152
44	Highly Extensible Doubleâ€Network Gels with Selfâ€Assembling Anisotropic Structure. Advanced Materials, 2008, 20, 4499-4503.	11.1	151
45	Barnacle Cement Proteinsâ€Inspired Tough Hydrogels with Robust, Longâ€Lasting, and Repeatable Underwater Adhesion. Advanced Functional Materials, 2021, 31, 2009334.	7.8	148
46	Friction of Gels. 3. Friction on Solid Surfaces. Journal of Physical Chemistry B, 1999, 103, 6001-6006.	1.2	140
47	Polymer Gels. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2004, 44, 87-112.	2.2	138
48	Biodegradation of high-toughness double network hydrogels as potential materials for artificial cartilage. Journal of Biomedical Materials Research - Part A, 2007, 81A, 373-380.	2.1	138
49	Friction of Gels. 4. Friction on Charged Gels. Journal of Physical Chemistry B, 1999, 103, 6007-6014.	1.2	134
50	Friction of Gels. Journal of Physical Chemistry B, 1997, 101, 5487-5489.	1.2	132
51	Phaseâ€Separationâ€Induced Anomalous Stiffening, Toughening, and Selfâ€Healing of Polyacrylamide Gels. Advanced Materials, 2015, 27, 6990-6998.	11.1	132
52	Importance of Entanglement between First and Second Components in High-Strength Double Network Gels. Macromolecules, 2007, 40, 6658-6664.	2.2	129
53	Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer, 2008, 49, 1885-1891.	1.8	126
54	Toughening hydrogels through force-triggered chemical reactions that lengthen polymer strands. Science, 2021, 374, 193-196.	6.0	124

#	Article	IF	CITATIONS
55	Crack Blunting and Advancing Behaviors of Tough and Self-healing Polyampholyte Hydrogel. Macromolecules, 2014, 47, 6037-6046.	2.2	123
56	Anisotropic tough double network hydrogel from fish collagen and its spontaneous inÂvivo bonding to bone. Biomaterials, 2017, 132, 85-95.	5.7	122
57	Structure Optimization and Mechanical Model for Microgel-Reinforced Hydrogels with High Strength and Toughness. Macromolecules, 2012, 45, 5218-5228.	2.2	119
58	Brittle–ductile transition of double network hydrogels: Mechanical balance of two networks as the key factor. Polymer, 2014, 55, 914-923.	1.8	119
59	Yielding Criteria of Double Network Hydrogels. Macromolecules, 2016, 49, 1865-1872.	2.2	119
60	Energyâ€Dissipative Matrices Enable Synergistic Toughening in Fiber Reinforced Soft Composites. Advanced Functional Materials, 2017, 27, 1605350.	7.8	116
61	Effects of polyelectrolyte complexation on the UCST of zwitterionic polymer. Polymer, 2000, 41, 141-147.	1.8	110
62	Rapid and Reversible Tuning of Structural Color of a Hydrogel over the Entire Visible Spectrum by Mechanical Stimulation. Chemistry of Materials, 2011, 23, 5200-5207.	3.2	109
63	Robust bonding and one-step facile synthesis of tough hydrogels with desirable shape by virtue of the double network structure. Polymer Chemistry, 2011, 2, 575-580.	1.9	108
64	Extremely tough composites from fabric reinforced polyampholyte hydrogels. Materials Horizons, 2015, 2, 584-591.	6.4	108
65	Water-Induced Brittle-Ductile Transition of Double Network Hydrogels. Macromolecules, 2010, 43, 9495-9500.	2.2	104
66	Multiscale Energy Dissipation Mechanism in Tough and Self-Healing Hydrogels. Physical Review Letters, 2018, 121, 185501.	2.9	104
67	The Fracture of Highly Deformable Soft Materials: A Tale of Two Length Scales. Annual Review of Condensed Matter Physics, 2021, 12, 71-94.	5.2	103
68	Fracture energy of polymer gels with controlled network structures. Journal of Chemical Physics, 2013, 139, 144905.	1.2	102
69	Bulk Energy Dissipation Mechanism for the Fracture of Tough and Self-Healing Hydrogels. Macromolecules, 2017, 50, 2923-2931.	2.2	102
70	Double-Network Strategy Improves Fracture Properties of Chondroitin Sulfate Networks. ACS Macro Letters, 2013, 2, 137-140.	2.3	101
71	Molecular structure of self-healing polyampholyte hydrogels analyzed from tensile behaviors. Soft Matter, 2015, 11, 9355-9366.	1.2	100
72	Synthesis and Fracture Process Analysis of Double Network Hydrogels with a Well-Defined First Network. ACS Macro Letters, 2013, 2, 518-521.	2.3	99

#	Article	IF	CITATIONS
73	Double network hydrogels from polyzwitterions: high mechanical strength and excellent anti-biofouling properties. Journal of Materials Chemistry B, 2013, 1, 3685.	2.9	99
74	Instant Thermal Switching from Soft Hydrogel to Rigid Plastics Inspired by Thermophile Proteins. Advanced Materials, 2020, 32, e1905878.	11.1	97
75	Free Reprocessability of Tough and Self-Healing Hydrogels Based on Polyion Complex. ACS Macro Letters, 2015, 4, 961-964.	2.3	96
76	Shape memory behaviors of crosslinked copolymers containing stearyl acrylate. Macromolecular Rapid Communications, 1996, 17, 539-543.	2.0	95
77	Ligament-like tough double-network hydrogel based on bacterial cellulose. Cellulose, 2010, 17, 93-101.	2.4	95
78	Tunable one-dimensional photonic crystals from soft materials. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 23, 45-67.	5.6	93
79	Magnetism and compressive modulus of magnetic fluid containing gels. Journal of Applied Physics, 1999, 85, 8451-8455.	1.1	91
80	Gel Machines Constructed from Chemically Cross-linked Actins and Myosins. Advanced Materials, 2002, 14, 1124.	11.1	91
81	Strong and Tough Polyion-Complex Hydrogels from Oppositely Charged Polyelectrolytes: A Comparative Study with Polyampholyte Hydrogels. Macromolecules, 2016, 49, 2750-2760.	2.2	91
82	Fabrication of Tough and Stretchable Hybrid Double-Network Elastomers Using Ionic Dissociation of Polyelectrolyte in Nonaqueous Media. Chemistry of Materials, 2019, 31, 3766-3776.	3.2	86
83	Mesoscale bicontinuous networks in self-healing hydrogels delay fatigue fracture. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7606-7612.	3.3	86
84	Cultivation of endothelial cells on adhesive protein-free synthetic polymer gels. Biomaterials, 2005, 26, 4588-4596.	5.7	83
85	Surface friction of polymer gels. Progress in Polymer Science, 2002, 27, 3-38.	11.8	81
86	Creating Stiff, Tough, and Functional Hydrogel Composites with Lowâ€Meltingâ€Point Alloys. Advanced Materials, 2018, 30, e1706885.	11.1	81
87	Anisotropic hydrogel based on bilayers: color, strength, toughness, and fatigue resistance. Soft Matter, 2012, 8, 8008.	1.2	80
88	Friction of Gels. 6. Effects of Sliding Velocity and Viscoelastic Responses of the Network. Journal of Physical Chemistry B, 2002, 106, 4596-4601.	1.2	78
89	Thermodynamic Interactions in Double-Network Hydrogels. Journal of Physical Chemistry B, 2008, 112, 3903-3909.	1.2	78
90	Formation of a strong hydrogel–porous solid interface via the double-network principle. Acta Biomaterialia, 2010, 6, 1353-1359.	4.1	78

#	Article	IF	CITATIONS
91	Tough Particleâ€Based Double Network Hydrogels for Functional Solid Surface Coatings. Advanced Materials Interfaces, 2018, 5, 1801018.	1.9	78
92	Localized Yielding Around Crack Tips of Doubleâ€Network Gels. Macromolecular Rapid Communications, 2008, 29, 1514-1520.	2.0	77
93	Antifouling properties of hydrogels. Science and Technology of Advanced Materials, 2011, 12, 064706.	2.8	77
94	Fiberâ€Reinforced Viscoelastomers Show Extraordinary Crack Resistance That Exceeds Metals. Advanced Materials, 2020, 32, e1907180.	11.1	77
95	Double-network hydrogel and its potential biomedical application: A review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2015, 229, 853-863.	1.0	76
96	Hydrogels as dynamic memory with forgetting ability. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18962-18968.	3.3	76
97	Surface Friction of Hydrogels with Well-Defined Polyelectrolyte Brushes. Langmuir, 2004, 20, 6549-6555.	1.6	75
98	The molecular origin of enhanced toughness in double-network hydrogels: A neutron scattering study. Polymer, 2007, 48, 7449-7454.	1.8	75
99	High Fracture Efficiency and Stress Concentration Phenomenon for Microgel-Reinforced Hydrogels Based on Double-Network Principle. Macromolecules, 2012, 45, 9445-9451.	2.2	75
100	Polymer gels as soft and wet chemomechanical systems—an approach to artificial muscles. Journal of Materials Chemistry, 2002, 12, 2169-2177.	6.7	74
101	Hydrogel/Elastomer Laminates Bonded via Fabric Interphases for Stimuli-Responsive Actuators. Matter, 2019, 1, 674-689.	5.0	74
102	In vitro differentiation of chondrogenic ATDC5 cells is enhanced by culturing on synthetic hydrogels with various charge densities. Acta Biomaterialia, 2010, 6, 494-501.	4.1	73
103	Elasticâ^'Hydrodynamic Transition of Gel Friction. Langmuir, 2005, 21, 8643-8648.	1.6	72
104	Polyelectrolyte Gels-Fundamentals and Applications. Polymer Journal, 2006, 38, 1211-1219.	1.3	71
105	Biological responses of novel high-toughness double network hydrogels in muscle and the subcutaneous tissues. Journal of Materials Science: Materials in Medicine, 2008, 19, 1379-1387.	1.7	71
106	Hydrogels with self-assembling ordered structures and their functions. NPG Asia Materials, 2011, 3, 57-64.	3.8	71
107	A phase diagram of neutral polyampholyte – from solution to tough hydrogel. Journal of Materials Chemistry B, 2013, 1, 4555.	2.9	71
108	Network elasticity of a model hydrogel as a function of swelling ratio: from shrinking to extreme swelling states. Soft Matter, 2018, 14, 9693-9701.	1.2	71

#	Article	IF	CITATIONS
109	Facile synthesis of novel elastomers with tunable dynamics for toughness, self-healing and adhesion. Journal of Materials Chemistry A, 2019, 7, 17334-17344.	5.2	70
110	Ring-Shaped Assembly of Microtubules Shows Preferential Counterclockwise Motion. Biomacromolecules, 2008, 9, 2277-2282.	2.6	68
111	Anisotropic Hydrogel from Complexation-Driven Reorientation of Semirigid Polyanion at Ca ²⁺ Diffusion Flux Front. Macromolecules, 2011, 44, 3535-3541.	2.2	67
112	Effect of void structure on the toughness of double network hydrogels. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1246-1254.	2.4	67
113	Environmental Responses of Polythiophene Hydrogels. Macromolecules, 2000, 33, 1232-1236.	2.2	66
114	Crack Tip Field of a Double-Network Gel: Visualization of Covalent Bond Scission through Mechanoradical Polymerization. Macromolecules, 2020, 53, 8787-8795.	2.2	65
115	Surfactant Binding of Polycations Carrying Charges on the Chain Backbone:Â Cooperativity, Stoichiometry and Crystallinity. Macromolecules, 1998, 31, 787-794.	2.2	64
116	Control superstructure of rigid polyelectrolytes in oppositely charged hydrogels via programmed internal stress. Nature Communications, 2014, 5, 4490.	5.8	64
117	Hydrophobic Hydrogels with Fruitâ€Like Structure and Functions. Advanced Materials, 2019, 31, e1900702.	11.1	64
118	A facile method for synthesizing free-shaped and tough double network hydrogels using physically crosslinked poly(vinyl alcohol) as an internal mold. Polymer Chemistry, 2010, 1, 693.	1.9	62
119	Strain-Induced Molecular Reorientation and Birefringence Reversion of a Robust, Anisotropic Double-Network Hydrogel. Macromolecules, 2011, 44, 3542-3547.	2.2	61
120	Friction of hydrogels with controlled surface roughness on solid flat substrates. Soft Matter, 2014, 10, 3192-3199.	1.2	60
121	Tough Double Network Hydrogel and Its Biomedical Applications. Annual Review of Chemical and Biomolecular Engineering, 2021, 12, 393-410.	3.3	60
122	Effect of Charge on Protein Diffusion in Hydrogels. Journal of Physical Chemistry B, 2000, 104, 9898-9903.	1.2	59
123	Friction of Gels. 5. Negative Load Dependence of Polysaccharide Gels. Journal of Physical Chemistry B, 2000, 104, 3423-3428.	1.2	58
124	Ultrathin tough double network hydrogels showing adjustable muscle-like isometric force generation triggered by solvent. Chemical Communications, 2009, , 7518.	2.2	58
125	Dynamic cell behavior on synthetic hydrogels with different charge densities. Soft Matter, 2009, 5, 1804.	1.2	56
126	Solvent-driven chemical motor. Applied Physics Letters, 1998, 73, 2366-2368.	1.5	55

JIAN PING GONG

2.1

4.0

2.2

1.2

6.6

1.2

11.1

49

49

47

47

46

#	Article	IF	CITATIONS
127	Fracture Process of Microgel-Reinforced Hydrogels under Uniaxial Tension. Macromolecules, 2014, 47, 3587-3594.	2.2	55
128	Heterogeneous Polymerization of Hydrogels on Hydrophobic Substrate. Journal of Physical Chemistry B, 2001, 105, 4565-4571.	1.2	54
129	Prolongation of the Active Lifetime of a Biomolecular Motor for in Vitro Motility Assay by Using an Inert Atmosphere. Langmuir, 2011, 27, 13659-13668.	1.6	54
130	Controlled Motion of Solvent-Driven Gel Motor and Its Application as a Generator. Langmuir, 2000, 16, 307-312.	1.6	53
131	Electrical Conductance of Polyelectrolyte Gels. Journal of Physical Chemistry B, 1997, 101, 740-745.	1.2	52
132	Antifouling activity of synthetic polymer gels against cyprids of the barnacle (<i>Balanus) Tj ETQq0 0 0 rgBT /Ove</i>	erlock 10 1 0.8	f 50 542 Td
133	Platelet adhesion to human umbilical vein endothelial cells cultured on anionic hydrogel scaffolds. Biomaterials, 2007, 28, 1752-1760.	5.7	50
134	Molecular Model for Toughening in Double-Network Hydrogels. Journal of Physical Chemistry B, 2008, 112, 8024-8031.	1.2	50

Soft and wet touch-sensing system made of hydrogel. Macromolecular Rapid Communications, 1995, 16,

Tuning of cell proliferation on tough gels by critical charge effect. Journal of Biomedical Materials

Macroscale Double Networks: Design Criteria for Optimizing Strength and Toughness. ACS Applied

Rapid reprogramming of tumour cells into cancer stem cells on double-network hydrogels. Nature

Hydrogels with Cylindrically Symmetric Structure at Macroscopic Scale by Self-Assembly of Semi-rigid

Stretching-induced ion complexation in physical polyampholyte hydrogels. Soft Matter, 2016, 12,

Tough and Selfâ€Recoverable Thin Hydrogel Membranes for Biological Applications. Advanced

Anisotropic Polyion-Complex Gels from Template Polymerization. Advanced Materials, 2005, 17,

Friction between like-charged hydrogelsâ€"combined mechanisms of boundary, hydrated and

Polyion Complex. Journal of the American Chemical Society, 2010, 132, 10064-10069.

Phase Separation Behavior in Tough and Self-Healing Polyampholyte Hydrogels. Macromolecules, 2020,

_
~
-,
_
_

713-716.

53, 5116-5126.

8833-8840.

2695-2699.

Research - Part A, 2009, 88A, 74-83.

Materials & amp; Interfaces, 2019, 11, 35343-35353.

elastohydrodynamic lubrication. Soft Matter, 2009, 5, 1879.

Biomedical Engineering, 2021, 5, 914-925.

Functional Materials, 2018, 28, 1801489.

136

138

140

142

144

#	Article	IF	CITATIONS
145	Sensing surface mechanical deformation using active probes driven by motor proteins. Nature Communications, 2016, 7, 12557.	5.8	46
146	Kinetic Study of Surfactant Binding into Polymer GelExperimental and Theoretical Analyses. Journal of Physical Chemistry B, 1998, 102, 4566-4572.	1.2	45
147	Shape memory functions and motility of amphiphilic polymer gels. Polymers for Advanced Technologies, 2001, 12, 136-150.	1.6	45
148	Antifouling properties of tough gels against barnacles in a long-term marine environment experiment. Biofouling, 2009, 25, 657-666.	0.8	45
149	Direct Observation on the Surface Fracture of Ultrathin Film Double-Network Hydrogels. Macromolecules, 2011, 44, 3016-3020.	2.2	45
150	Chemomechanical Polymer Gel with Fish-like Motion. Journal of Intelligent Material Systems and Structures, 1997, 8, 465-471.	1.4	44
151	Artificial cartilage made from a novel doubleâ€network hydrogel: <i>In vivo</i> effects on the normal cartilage and <i>ex vivo</i> evaluation of the friction property. Journal of Biomedical Materials Research - Part A, 2010, 93A, 1160-1168.	2.1	44
152	Effect of substrate adhesion and hydrophobicity on hydrogel friction. Soft Matter, 2008, 4, 1033.	1.2	43
153	Production of Bacterial Cellulose with Well Oriented Fibril on PDMS Substrate. Polymer Journal, 2008, 40, 137-142.	1.3	42
154	Creep Behavior and Delayed Fracture of Tough Polyampholyte Hydrogels by Tensile Test. Macromolecules, 2016, 49, 5630-5636.	2.2	42
155	Effect of Structure Heterogeneity on Mechanical Performance of Physical Polyampholytes Hydrogels. Macromolecules, 2019, 52, 7369-7378.	2.2	42
156	Sliding Friction of Zwitterionic Hydrogel and Its Electrostatic Origin. Macromolecules, 2014, 47, 3101-3107.	2.2	41
157	Anisotropic Growth of Hydroxyapatite in Stretched Double Network Hydrogel. ACS Nano, 2017, 11, 12103-12110.	7.3	41
158	Preparation of Tough Double- and Triple-Network Supermacroporous Hydrogels through Repeated Cryogelation. Chemistry of Materials, 2020, 32, 8576-8586.	3.2	41
159	Superior fracture resistance of fiber reinforced polyampholyte hydrogels achieved by extraordinarily large energy-dissipative process zones. Journal of Materials Chemistry A, 2019, 7, 13431-13440.	5.2	40
160	Effect of Relative Strength of Two Networks on the Internal Fracture Process of Double Network Hydrogels As Revealed by <i>in Situ</i> Small-Angle X-ray Scattering. Macromolecules, 2020, 53, 1154-1163.	2.2	40
161	Substrate Effect on Topographical, Elastic, and Frictional Properties of Hydrogels. Macromolecules, 2002, 35, 8161-8166.	2.2	39
162	Soft and Wet Materials: From Hydrogels to Biotissues. Advances in Polymer Science, 2010, , 203-246.	0.4	39

#	Article	IF	CITATIONS
163	Aggregated structures and their functionalities in hydrogels. Aggregate, 2021, 2, e33.	5.2	39
164	Electroconductive organogel. 3. Preparation and properties of a charge-transfer complex gel in an organic solvent. Macromolecules, 1991, 24, 5246-5250.	2.2	38
165	Tough polyion-complex hydrogels from soft to stiff controlled by monomer structure. Polymer, 2017, 116, 487-497.	1.8	38
166	Investigation of Molecular Diffusion in Hydrogel by Electronic Speckle Pattern Interferometry. Journal of Physical Chemistry B, 1999, 103, 6069-6074.	1.2	37
167	Friction of a soft hydrogel on rough solid substrates. Soft Matter, 2008, 4, 1645.	1.2	37
168	Quantitative Observation of Electric Potential Distribution of Brittle Polyelectrolyte Hydrogels Using Microelectrode Technique. Macromolecules, 2016, 49, 3100-3108.	2.2	37
169	Elastic–Plastic Transformation of Polyelectrolyte Complex Hydrogels from Chitosan and Sodium Hyaluronate. Macromolecules, 2018, 51, 8887-8898.	2.2	37
170	Effect of mesoscale phase contrast on fatigue-delaying behavior of self-healing hydrogels. Science Advances, 2021, 7, .	4.7	37
171	Nanophase Separation in Immiscible Double Network Elastomers Induces Synergetic Strengthening, Toughening, and Fatigue Resistance. Chemistry of Materials, 2021, 33, 3321-3334.	3.2	37
172	Tear Velocity Dependence of High-Strength Double Network Gels in Comparison with Fast and Slow Relaxation Modes Observed by Scanning Microscopic Light Scattering. Macromolecules, 2008, 41, 7173-7178.	2.2	36
173	Polyelectrolyte hydrogels for replacement and regeneration of biological tissues. Macromolecular Research, 2014, 22, 227-235.	1.0	36
174	Tough Double-Network Gels and Elastomers from the Nonprestretched First Network. ACS Macro Letters, 2019, 8, 1407-1412.	2.3	36
175	Micromechanical modeling of the multi-axial deformation behavior in double network hydrogels. International Journal of Plasticity, 2021, 137, 102901.	4.1	36
176	Thermoresponsive Shrinkage Triggered by Mesophase Transition in Liquid Crystalline Physical Hydrogels. Macromolecules, 2004, 37, 5385-5388.	2.2	35
177	Selective Formation of a Linear-Shaped Bundle of Microtubules. Langmuir, 2010, 26, 533-537.	1.6	35
178	Hydroxyapatite-coated double network hydrogel directly bondable to the bone: Biological and biomechanical evaluations of the bonding property in an osteochondral defect. Acta Biomaterialia, 2016, 44, 125-134.	4.1	35
179	Distinctive Characteristics of Internal Fracture in Tough Double Network Hydrogels Revealed by Various Modes of Stretching. Macromolecules, 2018, 51, 5245-5257.	2.2	35
180	Chitin-Based Double-Network Hydrogel as Potential Superficial Soft-Tissue-Repairing Materials. Biomacromolecules, 2020, 21, 4220-4230.	2.6	35

#	Article	IF	CITATIONS
181	Two-step surfactant binding of solvated and cross-linked poly(N -isopropylacrylamide-co-) Tj ETQq1 1 0.784314	∔rgβT/Ον∉ 1.0	erlogg 10 Tf 5(
182	Growth of Large Polymerâ^'Actin Complexes. Bioconjugate Chemistry, 2003, 14, 1185-1190.	1.8	34
183	Interfacial water structure at polymer gel/quartz interfaces investigated by sum frequency generation spectroscopy. Physical Chemistry Chemical Physics, 2008, 10, 4987.	1.3	34
184	Polymer Adsorbed Bilayer Membranes Form Self-Healing Hydrogels with Tunable Superstructure. Macromolecules, 2015, 48, 2277-2282.	2.2	34
185	Decoupling dual-stimuli responses in patterned lamellar hydrogels as photonic sensors. Journal of Materials Chemistry B, 2016, 4, 4104-4109.	2.9	34
186	Double network hydrogels based on semi-rigid polyelectrolyte physical networks. Journal of Materials Chemistry B, 2019, 7, 6347-6354.	2.9	34
187	Low-Frequency Dielectric Relaxation of Polyelectrolyte Gels. Journal of Physical Chemistry B, 1998, 102, 5246-5251.	1.2	33
188	Liquid-Crystalline Hydrogels. 1. Enhanced Effects of Incorporation of Acrylic Acid Units on the Liquid-Crystalline Ordering. Macromolecules, 2000, 33, 412-418.	2.2	33
189	Friction of Gels. 7. Observation of Static Friction between Like-Charged Gels. Journal of Physical Chemistry B, 2003, 107, 10221-10225.	1.2	33
190	Novel Developed Systems and Techniques Based on Double-Network Principle. Bulletin of the Chemical Society of Japan, 2011, 84, 1295-1311.	2.0	33
191	Effect of Aspect Ratio on Protein Diffusion in Hydrogels. Journal of Physical Chemistry B, 2000, 104, 9904-9908.	1.2	32
192	Fracture Process of Double-Network Gels by Coarse-Grained Molecular Dynamics Simulation. Macromolecules, 2018, 51, 3075-3087.	2.2	32
193	Substrate Effects of Gel Surfaces on Cell Adhesion and Disruption. Biomacromolecules, 2000, 1, 162-167.	2.6	31
194	Hydrogels with Crystalline or Liquid Crystalline Structure. Macromolecular Rapid Communications, 2002, 23, 447.	2.0	31
195	Self-Assembling Structure in Solution of a Semirigid Polyelectrolyte. Macromolecules, 2008, 41, 1791-1799.	2.2	31
196	Induction of Spontaneous Hyaline Cartilage Regeneration Using a Double-Network Gel. American Journal of Sports Medicine, 2011, 39, 1160-1169.	1.9	31
197	Stress Relaxation and Underlying Structure Evolution in Tough and Self-Healing Hydrogels. ACS Macro Letters, 2020, 9, 1582-1589.	2.3	31
198	Dynamic self-organization and polymorphism of microtubule assembly through active interactions with kinesin. Soft Matter, 2011, 7, 5654.	1.2	30

#	Article	IF	CITATIONS
199	Formation of ring-shaped assembly of microtubules with a narrow size distribution at an air–buffer interface. Soft Matter, 2012, 8, 10863.	1.2	30
200	Effects of charge density and hydrophobicity of ionene polymer on cell binding and viability. Colloid and Polymer Science, 2000, 278, 884-887.	1.0	29
201	Formation of Well-Oriented Microtubules with Preferential Polarity in a Confined Space under a Temperature Gradient. Journal of the American Chemical Society, 2009, 131, 18089-18095.	6.6	29
202	Microtubule bundle formation driven by ATP: the effect of concentrations of kinesin, streptavidin and microtubules. Nanotechnology, 2010, 21, 145603.	1.3	29
203	Toughness Enhancement and Stick–Slip Tearing of Double-Network Hydrogels in Poly(ethylene glycol) Solution. Macromolecules, 2012, 45, 4758-4763.	2.2	29
204	Water-Triggered Ductile–Brittle Transition of Anisotropic Lamellar Hydrogels and Effect of Confinement on Polymer Dynamics. Macromolecules, 2017, 50, 8169-8177.	2.2	29
205	Azo-Crosslinked Double-Network Hydrogels Enabling Highly Efficient Mechanoradical Generation. Journal of the American Chemical Society, 2022, 144, 3154-3161.	6.6	29
206	Preparation of polymeric metalâ€ŧetracyanoquinodimethane film and its bistable switching. Applied Physics Letters, 1992, 61, 2787-2789.	1.5	28
207	Hydrogels toughened by biominerals providing energy-dissipative sacrificial bonds. Journal of Materials Chemistry B, 2020, 8, 5184-5188.	2.9	28
208	A Possible Mechanism for the Substrate Effect on Hydrogel Formation. Journal of Physical Chemistry B, 2001, 105, 4572-4576.	1.2	27
209	Negatively charged polyelectrolyte gels as bio-tissue model system and for biomedical application. Current Opinion in Colloid and Interface Science, 2006, 11, 345-350.	3.4	27
210	Catch and Release of DNA in Coacervate-Dispersed Gels. Macromolecular Rapid Communications, 2006, 27, 1242-1246.	2.0	27
211	In situ observation of a hydrogel–glass interface during sliding friction. Soft Matter, 2014, 10, 5589-5596.	1.2	27
212	Swim bladder collagen forms hydrogel with macroscopic superstructure by diffusion induced fast gelation. Journal of Materials Chemistry B, 2015, 3, 7658-7666.	2.9	27
213	Polyelectrolyte complexation <i>via</i> viscoelastic phase separation results in tough and self-recovering porous hydrogels. Journal of Materials Chemistry B, 2019, 7, 5296-5305.	2.9	27
214	Thermosensitive Polymer Gel by Reversible Surfactant Binding. Macromolecules, 1996, 29, 6803-6806.	2.2	26
215	Effect of Surface Roughness of Hydrophobic Substrate on Heterogeneous Polymerization of Hydrogels. Journal of Physical Chemistry B, 2002, 106, 3073-3081.	1.2	26
216	Morphology of Actin Assemblies in Response to Polycation and Salts. Biomacromolecules, 2005, 6, 3005-3009.	2.6	26

JIAN PING GONG

#	Article	IF	CITATIONS
217	Dual Network Formation in Polyelectrolyte Hydrogel via Viscoelastic Phase Separation: Role of Ionic Strength and Polymerization Kinetics. Macromolecules, 2010, 43, 8202-8208.	2.2	26
218	Acrylamide Polymer Double-Network Hydrogels. Cartilage, 2011, 2, 374-383.	1.4	26
219	Spontaneous hyaline cartilage regeneration can be induced in an osteochondral defect created in the femoral condyle using a novel double-network hydrogel. BMC Musculoskeletal Disorders, 2011, 12, 49.	0.8	26
220	Growth of ring-shaped microtubule assemblies through stepwise active self-organisation. Soft Matter, 2013, 9, 7061.	1.2	26
221	Polyzwitterions as a Versatile Building Block of Tough Hydrogels: From Polyelectrolyte Complex Gels to Double-Network Gels. ACS Applied Materials & Interfaces, 2020, 12, 50068-50076.	4.0	26
222	Molecular and supramolecular structures of complexes formed by polyelectrolyte-surfactant interactions: effects of charge density and compositions. Journal of Polymer Science Part A, 1999, 37, 635-644.	2.5	25
223	Liquid Crystalline Gels. 3. Role of Hydrogen Bonding in the Formation and Stabilization of Mesophase Structures. Macromolecules, 2001, 34, 1470-1476.	2.2	25
224	Inhibitory Effects of Hydrogels on the Adhesion, Germination, and Development of Zoospores Originating from Laminaria angustata. Macromolecular Bioscience, 2002, 2, 163.	2.1	25
225	Shear-Induced Mesophase Organization of Polyanionic Rigid Rods in Aqueous Solution. Langmuir, 2004, 20, 6518-6520.	1.6	25
226	Anisotropic Nucleation Growth of Actin Bundle:Â A Model for Determining the Well-Defined Thickness of Bundlesâ€. Biochemistry, 2006, 45, 10313-10318.	1.2	25
227	SUPER TOUGH GELS WITH A DOUBLE NETWORK STRUCTURE. Chinese Journal of Polymer Science (English) Tj E	[Qa1 1 0.7	784314 rgBT 25
228	In Situ Monitoring of Hydrogel Polymerization Using Speckle Interferometry. Journal of Physical Chemistry B, 1999, 103, 2888-2891.	1.2	24
229	Friction of Soft Gel in Dilute Polymer Solution. Macromolecules, 2007, 40, 4313-4321.	2.2	24
230	A Multiaxial Theory of Double Network Hydrogels. Macromolecules, 2019, 52, 5937-5947.	2.2	24
231	Fabrication of Tough Hydrogel Composites from Photoresponsive Polymers to Show Double-Network Effect. ACS Applied Materials & Interfaces, 2019, 11, 37139-37146.	4.0	24
232	Role of dynamic bonds on fatigue threshold of tough hydrogels. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200678119.	3.3	24
233	Active self-organization of microtubules in an inert chamber system. Polymer Journal, 2012, 44, 607-611.	1.3	23
234	Liquid Crystalline Hydrogels. 2. Effects of Water on the Structural Ordering. Macromolecules, 2000, 33, 4422-4426.	2.2	22

14

#	Article	IF	CITATIONS
235	Effects of Carboxyls Attached at Alkyl Side Chain Ends on the Lamellar Structure of Hydrogels. Macromolecules, 2001, 34, 6024-6028.	2.2	22
236	Novel Thermosensitive IPN Hydrogel Having a Phase Transition Without Volume Change. Macromolecular Rapid Communications, 2002, 23, 171-174.	2.0	22
237	Swelling-induced long-range ordered structure formation in polyelectrolyte hydrogel. Soft Matter, 2012, 8, 8060.	1.2	22
238	Fundamental biomaterial properties of tough glycosaminoglycan-containing double network hydrogels newly developed using the molecular stent method. Acta Biomaterialia, 2016, 43, 38-49.	4.1	22
239	Micro patterning of hydroxyapatite by soft lithography on hydrogels for selective osteoconduction. Acta Biomaterialia, 2018, 81, 60-69.	4.1	22
240	How Supertough Gels Break. Physical Review Letters, 2018, 121, 135501.	2.9	22
241	Competitive cationâ^'Ï€ interactions between small cations and polycations with phenyl groups in poly(cationâ^'Ĩ€) hydrogels. Giant, 2020, 1, 100005.	2.5	22
242	Revisiting the Origins of the Fracture Energy of Tough Double-Network Hydrogels with Quantitative Mechanochemical Characterization of the Damage Zone. Macromolecules, 2021, 54, 10331-10339.	2.2	22
243	Spontaneous Motion of Amphoteric Polymer Gels on Water. Japanese Journal of Applied Physics, 1995, 34, L511-L512.	0.8	21
244	Kinetic study of cell disruption by ionic polymers with varied charge density. Colloid and Polymer Science, 2001, 279, 178-183.	1.0	21
245	Liquid Crystalline Hydrogels:Â Mesomorphic Behavior of Amphiphilic Polyacrylates Bearing Cholesterol Mesogen. Macromolecules, 2004, 37, 187-191.	2.2	21
246	Spontaneous Redifferentiation of Dedifferentiated Human Articular Chondrocytes on Hydrogel Surfaces. Tissue Engineering - Part A, 2010, 16, 2529-2540.	1.6	21
247	Long-term in situ observation of barnacle growth on soft substrates with different elasticity and wettability. Soft Matter, 2011, 7, 7281.	1.2	21
248	Controlled Clockwise–Counterclockwise Motion of the Ring-Shaped Microtubules Assembly. Biomacromolecules, 2011, 12, 3394-3399.	2.6	21
249	Molecular mechanism of abnormally large nonsoftening deformation in a tough hydrogel. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
250	Formation of Soluble Complexes by Two-Step Surfactant Bindings. Macromolecules, 1996, 29, 8021-8023.	2.2	20
251	Synthesis and properties of poly(3-thiopheneacetic acid) and its networks via electropolymerization. Synthetic Metals, 1999, 99, 53-59.	2.1	20
252	Water-Induced Crystallization of Hydrogels. Langmuir, 2002, 18, 965-967.	1.6	20

#	Article	IF	CITATIONS
253	Observation of the Three-Dimensional Structure of Actin Bundles Formed with Polycations. Biomacromolecules, 2008, 9, 537-542.	2.6	20
254	Dynamic Behavior and Spontaneous Differentiation of Mouse Embryoid Bodies on Hydrogel Substrates of Different Surface Charge and Chemical Structures. Tissue Engineering - Part A, 2011, 17, 2343-2357.	1.6	20
255	Gene expression profile of the cartilage tissue spontaneously regenerated in vivo by using a novel double-network gel: Comparisons with the normal articular cartilage. BMC Musculoskeletal Disorders, 2011, 12, 213.	0.8	20
256	Supramolecular Assemblies of a Semirigid Polyanion in Aqueous Solutions. Macromolecules, 2013, 46, 3581-3586.	2.2	20
257	In SituObservation of Ca2+Diffusion-Induced Superstructure Formation of a Rigid Polyanion. Macromolecules, 2014, 47, 7208-7214.	2.2	20
258	Coupled instabilities of surface crease and bulk bending during fast free swelling of hydrogels. Soft Matter, 2016, 12, 5081-5088.	1.2	20
259	Supramolecular hydrogels with multi-cylindrical lamellar bilayers: Swelling-induced contraction and anisotropic molecular diffusion. Polymer, 2017, 128, 373-378.	1.8	20
260	Tough double network elastomers reinforced by the amorphous cellulose network. Polymer, 2019, 178, 121686.	1.8	20
261	Ultrahighâ€Waterâ€Content Photonic Hydrogels with Large Electroâ€Optic Responses in Visible to Nearâ€Infrared Region. Advanced Optical Materials, 2021, 9, 2002198.	3.6	20
262	Facile preparation of cellulose hydrogel with Achilles tendon-like super strength through aligning hierarchical fibrous structure. Chemical Engineering Journal, 2022, 428, 132040.	6.6	20
263	Effects of water and cross-linkage on the formation of organized structure in the hydrogels. Polymer Gels and Networks, 1998, 6, 307-317.	0.6	19
264	Spreading of liquids on gel surfaces. Journal of Chemical Physics, 2000, 113, 8253-8259.	1.2	19
265	Microrheological Investigation of Substrate-Induced Gradient Structure in Hydrogels. Macromolecules, 2001, 34, 5725-5726.	2.2	19
266	Surface friction of polymer gels. Wear, 2001, 251, 1183-1187.	1.5	19
267	Anisotropic Gelation Seeded by a Rod-Like Polyelectrolyte. Macromolecules, 2007, 40, 2477-2485.	2.2	19
268	Gene expression, glycocalyx assay, and surface properties of human endothelial cells cultured on hydrogel matrix with sulfonic moiety: Effect of elasticity of hydrogel. Journal of Biomedical Materials Research - Part A, 2010, 95A, 531-542.	2.1	19
269	Effect of Hyaluronan Solution on Dynamic Friction of PVA Gel Sliding on Weakly Adhesive Glass Substrate. Macromolecules, 2011, 44, 8908-8915.	2.2	19
270	In Vitro Platelet Adhesion of PNaAMPS/PAAm and PNaAMPS/PDMAAm Doubleâ€Network Hydrogels. Macromolecular Chemistry and Physics, 2015, 216, 641-649.	1.1	19

#	Article	IF	CITATIONS
271	Anisotropic Double-Network Hydrogels via Controlled Orientation of a Physical Sacrificial Network. ACS Applied Polymer Materials, 2020, 2, 2350-2358.	2.0	19
272	Enhanced velocity of surfactant binding after the volume collapse of an oppositely charged gel. Macromolecular Rapid Communications, 1997, 18, 853-857.	2.0	18
273	Effects of Counterions and Co-Ions on the Surfactant Binding Process in the Charged Polymer Network. Journal of Physical Chemistry B, 1999, 103, 6262-6266.	1.2	18
274	Friction Coefficient between Rubber and Solid Substrate –Effect of Rubber Thickness–. Journal of the Physical Society of Japan, 2007, 76, 043601.	0.7	18
275	<i>In vivo</i> cartilage regeneration induced by a doubleâ€network hydrogel: Evaluation of a novel therapeutic strategy for femoral articular cartilage defects in a sheep model. Journal of Biomedical Materials Research - Part A, 2016, 104, 2159-2165.	2.1	18
276	Tough and Variable-Band-Gap Photonic Hydrogel Displaying Programmable Angle-Dependent Colors. ACS Omega, 2018, 3, 55-62.	1.6	18
277	Modulation and Characterization of the Double Network Hydrogel Surface-Bulk Transition. Macromolecules, 2019, 52, 6704-6713.	2.2	18
278	Effect of the constituent networks of double-network gels on their mechanical properties and energy dissipation process. Soft Matter, 2020, 16, 8618-8627.	1.2	18
279	Structure and Unique Functions of Anisotropic Hydrogels Comprising Uniaxially Aligned Lamellar Bilayers. Bulletin of the Chemical Society of Japan, 2021, 94, 2221-2234.	2.0	18
280	Substrate effect on the formation of hydrogels with heterogeneous network structure. Chemical Record, 2003, 3, 40-50.	2.9	17
281	Influence of Cyclohexane Vapor on Stick-Slip Friction between Mica Surfaces. Langmuir, 2007, 23, 7032-7038.	1.6	17
282	Adhesion, Spreading, and Proliferation of Endothelial Cells on Charged Hydrogels. Journal of Adhesion, 2009, 85, 839-868.	1.8	17
283	Geometric and Edge Effects on Swelling-Induced Ordered Structure Formation in Polyelectrolyte Hydrogels. Macromolecules, 2013, 46, 9083-9090.	2.2	17
284	Effects of osteochondral defect size on cartilage regeneration using a double-network hydrogel. BMC Musculoskeletal Disorders, 2017, 18, 210.	0.8	17
285	Damage cross-effect and anisotropy in tough double network hydrogels revealed by biaxial stretching. Soft Matter, 2019, 15, 3719-3732.	1.2	17
286	Electroconductive organogel. 4. Electrodriven chemomechanical behaviors of charge-transfer complex gel in organic solvent. Macromolecules, 1991, 24, 6582-6587.	2.2	16
287	Surface Friction of Poly(dimethyl Siloxane) Gel and Its Transition Phenomenon. Tribology Letters, 2004, 17, 505-511.	1.2	16
288	Characteristics of chemically cross-linked myosin gels. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 203-218.	1.9	16

#	Article	lF	CITATIONS
289	Polarity and Motility of Large Polymerâ [~] Actin Complexes. Biomacromolecules, 2005, 6, 845-849.	2.6	16
290	Actin Network Formation by Unidirectional Polycation Diffusion. Langmuir, 2007, 23, 6257-6262.	1.6	16
291	Brittle, ductile, paste-like behaviors and distinct necking of double network gels with enhanced heterogeneity. Journal of Physics: Conference Series, 2009, 184, 012016.	0.3	16
292	Surfactant-induced friction reduction for hydrogels in the boundary lubrication regime. Journal of Physics Condensed Matter, 2011, 23, 284107.	0.7	16
293	Double-network acrylamide hydrogel compositions adapted to achieve cartilage-like dynamic stiffness. Biomechanics and Modeling in Mechanobiology, 2013, 12, 243-248.	1.4	16
294	Structure Frustration Enables Thermal History-Dependent Responsive Behavior in Self-Healing Hydrogels. Macromolecules, 2021, 54, 9927-9936.	2.2	16
295	Presence of Electrostatic Potential Wells in the Ionic Polymer Network. Chemistry Letters, 1995, 24, 449-450.	0.7	15
296	Effect of Hydrophobic Side Chain on Poly(carboxyl acid) Dissociation and Surfactant Binding. Macromolecules, 2003, 36, 8830-8835.	2.2	15
297	Liquid Crystalline Gels. 4. Water- and Stress-Induced Mesophase Transition. Langmuir, 2003, 19, 8134-8136.	1.6	15
298	Nonvolatile and Shape-Memorized Bacterial Cellulose Gels Swollen by Poly(ethylene glycol). Polymer Journal, 2009, 41, 524-525.	1.3	15
299	A Deformation Mechanism for Doubleâ€Network Hydrogels with Enhanced Toughness. Macromolecular Symposia, 2010, 291-292, 122-126.	0.4	15
300	Synthetic hydrogels as scaffolds for manipulating endothelium cell behaviors. Chinese Journal of Polymer Science (English Edition), 2011, 29, 23-41.	2.0	15
301	How to Integrate Biological Motors towards Bioâ€Actuators Fueled by ATP. Macromolecular Bioscience, 2011, 11, 1314-1324.	2.1	15
302	Hydrogels as feeder-free scaffolds for long-term self-renewal of mouse induced pluripotent stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 375-388.	1.3	15
303	Quantitative evaluation of macromolecular crowding environment based on translational and rotational diffusion using polarization dependent fluorescence correlation spectroscopy. Scientific Reports, 2021, 11, 10594.	1.6	15
304	Kinetics of fluid spreading on viscoelastic substrates. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 562-572.	2.4	14
305	Joint immobilization inhibits spontaneous hyaline cartilage regeneration induced by a novel double-network gel implantation. Journal of Materials Science: Materials in Medicine, 2011, 22, 417-425.	1.7	14
306	Intra-articular administration of hyaluronic acid increases the volume of the hyaline cartilage regenerated in a large osteochondral defect by implantation of a double-network gel. Journal of Materials Science: Materials in Medicine, 2014, 25, 1173-1182.	1.7	14

#	Article	IF	CITATIONS
307	Quasi-unidirectional shrinkage of gels with well-oriented lipid bilayers upon uniaxial stretching. Soft Matter, 2015, 11, 237-240.	1.2	14
308	Programmed Diffusion Induces Anisotropic Superstructures in Hydrogels with High Mechanoâ€Optical Sensitivity. Advanced Materials Technologies, 2019, 4, 1900665.	3.0	14
309	Facile tuning of hydrogel properties by manipulating cationic-aromatic monomer sequences. Science China Chemistry, 2021, 64, 1560-1568.	4.2	14
310	Unique crack propagation of double network hydrogels under high stretch. Extreme Mechanics Letters, 2022, 51, 101588.	2.0	14
311	Self-Propagating Association of Zwitterionic Polymers Initiated by Ionene Polymers. Macromolecular Rapid Communications, 2002, 23, 423.	2.0	13
312	Electric Field Effect on the Sliding Friction of a Charged Gel. Journal of the Physical Society of Japan, 2009, 78, 084602.	0.7	13
313	A Polysaccharideâ€Based Container Transportation System Powered by Molecular Motors. Angewandte Chemie - International Edition, 2010, 49, 724-727.	7.2	13
314	Hydrogels with a macroscopic-scale liquid crystal structure by self-assembly of a semi-rigid polyion complex. Polymer Journal, 2012, 44, 503-511.	1.3	13
315	Poly(2â€acrylamidoâ€2â€methylpropanesulfonic acid) gel induces articular cartilage regeneration <i>in vivo</i> : Comparisons of the induction ability between single―and doubleâ€network gels. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2244-2251.	2.1	13
316	Mechanical behavior of unidirectional fiber reinforced soft composites. Extreme Mechanics Letters, 2020, 35, 100642.	2.0	13
317	Surfactant binding by polyelectrolyte gels and its application to electro-driven chemomechanics. Polymer International, 1999, 48, 691-698.	1.6	12
318	Fluorinated Water-Swollen Hydrogels with Molecular and Supramolecular Organization. Macromolecules, 2000, 33, 2535-2538.	2.2	12
319	Titration behaviors and spectral properties of hydrophobically modified water-soluble polythiophenes. European Polymer Journal, 2001, 37, 2499-2503.	2.6	12
320	Multi-functions of hydrogel with bilayer-based lamellar structure. Reactive and Functional Polymers, 2013, 73, 929-935.	2.0	12
321	Tough, self-recovery and self-healing polyampholyte hydrogels. Polymer Science - Series C, 2017, 59, 11-17.	0.8	12
322	Relaxation Dynamics and Underlying Mechanism of a Thermally Reversible Gel from Symmetric Triblock Copolymer. Macromolecules, 2019, 52, 8651-8661.	2.2	12
323	Constitutive modeling of bond breaking and healing kinetics of physical Polyampholyte (PA) gel. Extreme Mechanics Letters, 2021, 43, 101184.	2.0	12
324	How chain dynamics affects crack initiation in double-network gels. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12

#	Article	IF	CITATIONS
325	First Observation of Stickâ^'Slip Instability in Tearing of Poly(vinyl alcohol) Gel Sheets. Macromolecules, 2009, 42, 5425-5426.	2.2	11
326	Dynamics in Multicomponent Polyelectrolyte Solutions. Macromolecules, 2009, 42, 1293-1299.	2.2	11
327	Study on the Sliding Friction of Endothelial Cells Cultured on Hydrogel and the Role of Glycocalyx on Friction Reduction. Advanced Engineering Materials, 2010, 12, B628.	1.6	11
328	Mechanics and physics of hydrogels. Soft Matter, 2012, 8, 8006.	1.2	11
329	Nematic growth of microtubules that changed into giant spiral structure through partial depolymerization and subsequent dynamic ordering. Soft Matter, 2012, 8, 11544.	1.2	11
330	Synthetic <scp>PAMPS</scp> gel activates <scp>BMP</scp> /Smad signaling pathway in <scp>ATDC</scp> 5 cells, which plays a significant role in the gelâ€induced chondrogenic differentiation. Journal of Biomedical Materials Research - Part A, 2016, 104, 734-746.	2.1	11
331	Double-network gels as polyelectrolyte gels with salt-insensitive swelling properties. Soft Matter, 2020, 16, 5487-5496.	1.2	11
332	Improving the strength and toughness of macroscale double networks by exploiting Poisson's ratio mismatch. Scientific Reports, 2021, 11, 13280.	1.6	11
333	Tiny yet tough: Maximizing the toughness of fiber-reinforced soft composites in the absence of a fiber-fracture mechanism. Matter, 2021, 4, 3646-3661.	5.0	11
334	Hydrogels with the ordered structures. Science and Technology of Advanced Materials, 2000, 1, 201-210.	2.8	10
335	Surface friction of polymer gels. Wear, 2001, 251, 1188-1192.	1.5	10
336	Hydrogel with cubic-packed giant concentric domains of semi-rigid polyion complex. Soft Matter, 2011, 7, 1884.	1.2	10
337	Hyaluronic acid affects the in vitro induction effects of Synthetic PAMPS and PDMAAm hydrogels on chondrogenic differentiation of ATDC5 cells, depending on the level of concentration. BMC Musculoskeletal Disorders, 2013, 14, 56.	0.8	10
338	Influence of the gel thickness on in vivo hyaline cartilage regeneration induced by double-network gel implanted at the bottom of a large osteochondral defect: Short-term results. BMC Musculoskeletal Disorders, 2013, 14, 50.	0.8	10
339	Relaxation modes in chemically cross-linked poly(2-methacryloyloxyethyl phosphorylcholine) hydrogels. Soft Matter, 2013, 9, 2166.	1.2	10
340	Prolonged morphometric study of barnacles grown on soft substrata of hydrogels and elastomers. Biofouling, 2014, 30, 271-279.	0.8	10
341	Friction of Zwitterionic Hydrogel by Dynamic Polymer Adsorption. Macromolecules, 2015, 48, 5394-5401.	2.2	10
342	Molecular structure and properties of click hydrogels with controlled dangling end defect. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1227-1236.	2.4	10

#	Article	IF	CITATIONS
343	Internal Damage Evolution in Double-Network Hydrogels Studied by Microelectrode Technique. Macromolecules, 2019, 52, 7114-7122.	2.2	10
344	Polymer gels as a chemical valve. Bioseparation, 1998, 7, 269-280.	0.7	9
345	Ionization and order–disorder transition of hydrogels with ionizable hydrophobic side chain. Journal of Molecular Structure, 2000, 554, 91-97.	1.8	9
346	Real-Time Laser Sheet Refraction To Monitor in Situ the Heterogeneity of Polymerization Process on Teflon Surface. Macromolecules, 2001, 34, 7829-7835.	2.2	9
347	Surface sliding friction of negatively charged polyelectrolyte gels. Colloids and Surfaces B: Biointerfaces, 2007, 56, 296-302.	2.5	9
348	Self-assembled structures of a semi-rigid polyanion in aqueous solutions and hydrogels. Science China Chemistry, 2012, 55, 735-742.	4.2	9
349	Tuning Mechanical Properties of Chondroitin Sulfateâ€ <scp>B</scp> ased Doubleâ€ <scp>N</scp> etwork Hydrogels. Macromolecular Symposia, 2013, 329, 9-18.	0.4	9
350	Drag force on micron-sized objects with different surface morphologies in a flow with a small Reynolds number. Polymer Journal, 2015, 47, 564-570.	1.3	9
351	Gel machines constructed from chemically cross-linked actins and myosins. Polymer, 2005, 46, 7759-7770.	1.8	8
352	Toughening of Hydrogels with Double Network Structure. E-Journal of Surface Science and Nanotechnology, 2005, 3, 8-11.	0.1	8
353	Selective Cell Spreading, Proliferation, and Orientation on Micropatterned Gel Surfaces. Journal of Nanoscience and Nanotechnology, 2007, 7, 773-779.	0.9	8
354	Morphogenesis of Liposomes Caused by Polycation-Induced Actin Assembly Formation. Langmuir, 2008, 24, 11975-11981.	1.6	8
355	Orientated Bacterial Cellulose Culture Controlled by Liquid Substrate of Silicone Oil with Different Viscosity and Thickness. Polymer Journal, 2009, 41, 764-770.	1.3	8
356	Hierarchical structures of the actin/polycation complexes, investigated by ultra-small-angle neutron scattering and fluorescence microscopy. Soft Matter, 2010, 6, 2021.	1.2	8
357	High-Fidelity Hydrogel Thin Films Processed from Deep Eutectic Solvents. ACS Applied Materials & Interfaces, 2020, 12, 43191-43200.	4.0	8
358	Integrin α4 mediates ATDC5 cell adhesion to negatively charged synthetic polymer hydrogel leading to chondrogenic differentiation. Biochemical and Biophysical Research Communications, 2020, 528, 120-126.	1.0	8
359	Integration of Motor Proteins – Towards an ATP Fueled Soft Actuator. International Journal of Molecular Sciences, 2008, 9, 1685-1703.	1.8	7
360	Mechanism on Polarity Sorting of Actin Bundles Formed with Polycations. Langmuir, 2009, 25, 1554-1557.	1.6	7

#	Article	IF	CITATIONS
361	Osteochondral Autograft Transplantation Technique Augmented by an Ultrapurified Alginate Gel Enhances Osteochondral Repair in a Rabbit Model. American Journal of Sports Medicine, 2019, 47, 468-478.	1.9	7
362	How surface stress transforms surface profiles and adhesion of rough elastic bodies. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200477.	1.0	7
363	Lamellar Bilayer to Fibril Structure Transformation of Tough Photonic Hydrogel under Elongation. Macromolecules, 2020, 53, 4711-4721.	2.2	7
364	Non-linear rheological study of hydrogel sliding friction in water and concentrated hyaluronan solution. Tribology International, 2020, 147, 106270.	3.0	7
365	Flower-like Photonic Hydrogel with Superstructure Induced via Modulated Shear Field. ACS Macro Letters, 2021, 10, 708-713.	2.3	7
366	Electroconductive Organogel. 6. Thermal and Electroconductive Characteristics of a Charged Polypeptide Gel in Organic Medium. Macromolecules, 1994, 27, 7877-7879.	2.2	6
367	Influence of Shear Stress on Cationic Surfactant Uptake by Anionic Gels. Journal of Physical Chemistry B, 2003, 107, 13601-13607.	1.2	6
368	Creation of Double Network Hydrogels with Extremely High Strength and Its Anomalous Fracture Mechanism. Kobunshi Ronbunshu, 2008, 65, 707-715.	0.2	6
369	Nano-biomachine from actin and myosin gels. Polymer Science - Series A, 2009, 51, 689-700.	0.4	6
370	Double Network Hydrogels as Tough, Durable Tissue Substitutes. , 2010, , 285-301.		6
371	Formation of motile assembly of microtubules driven by kinesins. Smart Materials and Structures, 2011, 20, 124007.	1.8	6
372	Lamellar–micelle transition in a hydrogel induced by polyethylene glycol grafting. Soft Matter, 2013, 9, 5223.	1.2	6
373	Isotope Microscopic Observation of Osteogenesis Process Forming Robust Bonding of Double Network Hydrogel to Bone. Advanced Healthcare Materials, 2021, 10, e2001731.	3.9	6
374	Constitutive modeling of strain-dependent bond breaking and healing kinetics of chemical polyampholyte (PA) gel. Soft Matter, 2021, 17, 4161-4169.	1.2	6
375	Experimental Verification of the Balance between Elastic Pressure and Ionic Osmotic Pressure of Highly Swollen Charged Gels. Gels, 2021, 7, 39.	2.1	6
376	Chemomechanical bending behaviors of ionizable thin films with gradient network-size. Thin Solid Films, 1999, 350, 289-294.	0.8	5
377	Formation of Ciant Needle-Like Polycation-Bile Acid Complexes. Macromolecular Rapid Communications, 2003, 24, 789-792.	2.0	5
378	ATPâ€fueled soft gel machine with wellâ€oriented structure constructed using actinâ€myosin system. Journal of Applied Polymer Science, 2009, 114, 2087-2092.	1.3	5

#	Article	IF	CITATIONS
379	Significant increase in Young× ³ s modulus of ATDC5 cells during chondrogenic differentiation induced by PAMPS/PDMAAm double-network gel: Comparison with induction by insulin. Journal of Biomechanics, 2014, 47, 3408-3414.	0.9	5
380	Fractal Pattern Formation of Metal-Containing Polymeric Thin Films Prepared by Plasma Reaction. Bulletin of the Chemical Society of Japan, 1990, 63, 1578-1583.	2.0	4
381	Photo-Current Characteristics of Two-Layered Organic Thin Films Prepared by Plasma Polymerization. Polymer Journal, 1994, 26, 754-757.	1.3	4
382	Complexation and Crystallization of Anionic Phthalocyanine with Soluble and Cross-Linked Polycations. Langmuir, 1999, 15, 5670-5675.	1.6	4
383	Surface friction of gellan gels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 284-285, 56-60.	2.3	4
384	Mesoscopic Network Structure of a Semiâ€Rigid Polyion Complex Nested in a Polycationic Hydrogel. Advanced Materials, 2009, 21, 4696-4700.	11.1	4
385	Photoinduced <i>in situ</i> formation of various Fâ€actin assemblies with a photoresponsive polycation. Journal of Biomedical Materials Research - Part A, 2009, 89A, 424-431.	2.1	4
386	Ultrapurified Alginate Gel Containing Bone Marrow Aspirate Concentrate Enhances Cartilage and Bone Regeneration on Osteochondral Defects in a Rabbit Model. American Journal of Sports Medicine, 2021, 49, 2199-2210.	1.9	4
387	Surfactant induced bilayer-micelle transition for emergence of functions in anisotropic hydrogel. Journal of Materials Chemistry B, 2022, 10, 8386-8397.	2.9	4
388	Iridescent coloration of a copolymer gel in an organic solvent. Macromolecular Chemistry and Physics, 1994, 195, 1871-1876.	1.1	3
389	Electrical control of polymer association and its chemomechanical behavior. Macromolecular Rapid Communications, 1994, 15, 73-79.	2.0	3
390	Thickness decrease of a grafted polyelectrolyte membrane exposed to shear flow. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2808-2815.	2.4	3
391	Surface friction of polyelectrolyte gels. Macromolecular Symposia, 2003, 195, 209-216.	0.4	3
392	Gel biomachine based on muscle proteins. Polymer Bulletin, 2007, 58, 43-52.	1.7	3
393	Structural Approaches on the Toughness in Double Network Hydrogels. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 117-138.	0.5	3
394	Bactericidal effect of cationic hydrogels prepared from hydrophilic polymers. Journal of Applied Polymer Science, 2020, 137, 49583.	1.3	3
395	Nano-Gel Machine Reconstructed from Muscle Proteins. E-Journal of Surface Science and Nanotechnology, 2005, 3, 51-54.	0.1	3
396	Hydroxyapatiteâ€hybridized doubleâ€network hydrogel surface enhances differentiation of bone marrowâ€derived mesenchymal stem cells to osteogenic cells. Journal of Biomedical Materials Research - Part A, 2022, 110, 747-760.	2.1	3

#	Article	IF	CITATIONS
397	Evaluation of biological responses to micro-particles derived from a double network hydrogel. Biomaterials Science, 2022, 10, 2182-2187.	2.6	3
398	Synthesis of degradable double network gels using a hydrolysable cross-linker. Polymer Chemistry, 2022, 13, 3756-3762.	1.9	3
399	Surface friction of hydrogels. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1999, 75, 122-126.	1.6	2
400	Intelligent Gels. Materials Research Society Symposia Proceedings, 1999, 604, 149.	0.1	2
401	Intelligent gel– surface properties and functions of gels–. Macromolecular Symposia, 2000, 159, 215-220.	0.4	2
402	Hydrogels with Extremely High Mechanical Strength. Membrane, 2006, 31, 302-306.	0.0	2
403	Tough Hydrogel - Learn from Nature. Advances in Science and Technology, 0, , .	0.2	2
404	Double-Network Hydrogels: Soft and Tough IPN. , 2013, , 1-6.		2
405	Anisotropic Gelation Induced by Very Little Amount of Filamentous Actin. Macromolecular Chemistry and Physics, 2015, 216, 2007-2011.	1.1	2
406	Double Network Gels: Tough Particleâ€Based Double Network Hydrogels for Functional Solid Surface Coatings (Adv. Mater. Interfaces 23/2018). Advanced Materials Interfaces, 2018, 5, 1870118.	1.9	2
407	Synthetic poly(2â€acrylamidoâ€2â€methylpropanesulfonic acid) gel induces chondrogenic differentiation of <scp>ATDC5</scp> cells via a novel protein reservoir function. Journal of Biomedical Materials Research - Part A, 2021, 109, 354-364.	2.1	2
408	Hierarchical toughening: A step toward matching the complexity of biological materials. CheM, 2021, 7, 1153-1155.	5.8	2
409	Fast <i>in vivo</i> fixation of double network hydrogel to bone by monetite surface hybridization. Journal of the Ceramic Society of Japan, 2021, 129, 584-589.	0.5	2
410	A surface flattening method for characterizing the surface stress, drained Poisson's ratio and diffusivity of poroelastic gels. Soft Matter, 2021, 17, 7332-7340.	1.2	2
411	In Situ Evaluation of the Polymer Concentration Distribution of Microphase-Separated Polyelectrolyte Hydrogels by the Microelectrode Technique. Macromolecules, 2021, 54, 10776-10785.	2.2	2
412	Modelling and simulation of electrostatic potential distribution in polyelectrolyte gels. Electrochimica Acta, 1995, 40, 2445-2447.	2.6	1
413	Crystalline Structure and Thermal Behavior of Water-Soluble Copolymers with Pendant Terthiophenes. Macromolecular Chemistry and Physics, 2002, 203, 176-181.	1.1	1
414	Water-Swollen Hydrogels with Pendant Terthiophenes. Macromolecular Chemistry and Physics, 2003, 204, 661-665.	1.1	1

#	Article	IF	CITATIONS
415	Motility and Structural Polymorphism of Polymer–Actin Complex Gel. Journal of Nanoscience and Nanotechnology, 2007, 7, 844-847.	0.9	1
416	Barnacle Settlement Behavior on Natural Polymer Gels. Kobunshi Ronbunshu, 2013, 70, 326-330.	0.2	1
417	Optical and Mechanical Properties of a Hydrogel Based on Lamellar Bilayers. Kobunshi Ronbunshu, 2013, 70, 309-316.	0.2	1
418	Shearing-induced contact pattern formation in hydrogels sliding in polymer solution. Soft Matter, 2019, 15, 1953-1959.	1.2	1
419	Hydrogel as Low-Friction Materials. , 2014, , 1-10.		1
420	Quantitative determination of cation–i̇́€ interactions between metal ions and aromatic groups in aqueous media by a hydrogel Donnan potential method. Physical Chemistry Chemical Physics, 2022, 24, 6126-6132.	1.3	1
421	Flower Petal-like Pattern on Soft Hydrogels during Vodka Spreading. , 2008, , 225-230.		0
422	Synthesis of Novel Double Network Hydrogels via Atom Transfer Radical Polymerization. Composite Interfaces, 2009, 16, 433-446.	1.3	0
423	Hydrogel Friction and Lubrication. , 2014, , 145-181.		0
424	Solvent andCa2+triggered robust and fast stress generation by ultrathin triple-network hydrogels. Extreme Mechanics Letters, 2014, 1, 17-22.	2.0	0
425	Stimuli-Responsive Transformation of a Gradient Gel. Kobunshi Ronbunshu, 2017, 74, 311-318.	0.2	0
426	Surface of Gel as the Extremely Low Friction Material. Oleoscience, 2001, 1, 929-934,926.	0.0	0
427	Electrical Behaviors and Mechanical Responses of Polyelectrolyte Gels. , 2001, , .		Ο
428	Cooperative Binding in Surfactant-Polymer Association. , 2004, , .		0
429	Spontaneous In Vivo Regeneration of the Articular Cartilage Using a Novel Double-Network Hydrogel. , 2010, , 116-125.		0
430	TEM Observation of Nano-Scale Hydrogel Network Structure. ECS Meeting Abstracts, 2018, , .	0.0	0
431	Antibacterial Property of Cationic Hydrogels. ECS Meeting Abstracts, 2018, , .	0.0	0
432	Self-Toughening of Double Network Hydrogels By Using Bond Rupture-Induced Radical Polymerization. ECS Meeting Abstracts, 2018, , .	0.0	0

JIAN PING GONG

#	ARTICLE	IF	CITATIONS
433	(Invited) Distinctive Characteristics of Internal Fracture in Tough Double Network Hydrogels Revealed By Various Modes of Stretching. ECS Meeting Abstracts, 2018, , .	0.0	0
434	(Invited) Creating "Double Network―Composites Via Macroscale Reinforcement. ECS Meeting Abstracts, 2018, , .	0.0	0
435	Toughening Mechanism of Double Network Gels and New Research Trends. Nippon Gomu Kyokaishi, 2019, 92, 352-356.	0.0	0
436	Tough Double-Network Hydrogels as Scaffolds for Tissue Engineering. Advances in Bioinformatics and Biomedical Engineering Book Series, 0, , 213-222.	0.2	0