
Mohamed Mohy Eldin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8247862/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers. Arabian Journal of Chemistry, 2015, 8, 1-14.	2.3	496
2	Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: Characterization and bio-evaluation. Arabian Journal of Chemistry, 2015, 8, 38-47.	2.3	257
3	Modification methods for poly(arylsulfone) membranes: A mini-review focusing on surface modification. Desalination, 2011, 275, 1-9.	4.0	243
4	Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: Synthesis and characterization for biomedical applications. Arabian Journal of Chemistry, 2014, 7, 372-380.	2.3	171
5	Fabrication of biodegradable gelatin/chitosan/cinnamaldehyde crosslinked membranes for antibacterial wound dressing applications. International Journal of Biological Macromolecules, 2019, 139, 440-448.	3.6	115
6	Synthesis, characterization and antimicrobial evaluation of two aromatic chitosan Schiff base derivatives. Process Biochemistry, 2016, 51, 1721-1730.	1.8	110
7	Antibacterial and antioxidative activity of O-amine functionalized chitosan. Carbohydrate Polymers, 2017, 169, 441-450.	5.1	110
8	Chitosan/hyaluronan/edaravone membranes for anti-inflammatory wound dressing: In vitro and in vivo evaluation studies. Materials Science and Engineering C, 2018, 90, 227-235.	3.8	100
9	Chitosan based adsorbents for the removal of phosphate and nitrate: A critical review. Carbohydrate Polymers, 2021, 274, 118671.	5.1	91
10	Antioxidant and antibacterial polyelectrolyte wound dressing based on chitosan/hyaluronan/phosphatidylcholine dihydroquercetin. International Journal of Biological Macromolecules, 2021, 166, 18-31.	3.6	90
11	MitoQ Loaded Chitosan-Hyaluronan Composite Membranes for Wound Healing. Materials, 2018, 11, 569.	1.3	82
12	Hemostatic and antibacterial PVA/Kaolin composite sponges loaded with penicillin–streptomycin for wound dressing applications. Scientific Reports, 2021, 11, 3428.	1.6	79
13	Galactose competitive inhibition of β-galactosidase (Aspergillus oryzae) immobilized on chitosan and nylon supports. Enzyme and Microbial Technology, 1998, 23, 101-106.	1.6	76
14	Ciprofloxacin removal using magnetic fullerene nanocomposite obtained from sustainable PET bottle wastes: Adsorption process optimization, kinetics, isotherm, regeneration and recycling studies. Chemosphere, 2020, 239, 124728.	4.2	70
15	Development of amphoteric alginate/aminated chitosan coated microbeads for oral protein delivery. International Journal of Biological Macromolecules, 2016, 92, 362-370.	3.6	65
16	Preparation and characterization of metronidazoleâ€loaded chitosan nanoparticles for drug delivery application. Polymers for Advanced Technologies, 2008, 19, 1787-1791.	1.6	63
17	Enhancement of wound healing by chitosan/hyaluronan polyelectrolyte membrane loaded with glutathione: in vitro and in vivo evaluations. Journal of Biotechnology, 2020, 310, 103-113.	1.9	57
18	Antimicrobial activity of novel aminated chitosan derivatives for biomedical applications. Advances in Polymer Technology, 2012, 31, 414-428.	0.8	53

Mohamed Mohy Eldin

#	Article	IF	CITATIONS
19	Immobilization of penicillin G acylase onto chemically grafted nylon particles. Journal of Molecular Catalysis B: Enzymatic, 2000, 10, 445-451.	1.8	52
20	Formulation of Quaternized Aminated Chitosan Nanoparticles for Efficient Encapsulation and Slow Release of Curcumin. Molecules, 2021, 26, 449.	1.7	50
21	Polyacrylamideâ€grafted carboxymethyl cellulose: Smart pHâ€sensitive hydrogel for protein concentration. Journal of Applied Polymer Science, 2011, 122, 469-479.	1.3	49
22	Fabrication of attapulgite/magnetic aminated chitosan composite as efficient and reusable adsorbent for Cr (VI) ions. Scientific Reports, 2021, 11, 16598.	1.6	49
23	l-Arginine grafted alginate hydrogel beads: A novel pH-sensitive system for specific protein delivery. Arabian Journal of Chemistry, 2015, 8, 355-365.	2.3	46
24	Biodegradable Zein-Based Films: Influence of γ-Irradiation on Structural and Functional Properties. Journal of Agricultural and Food Chemistry, 2009, 57, 2529-2535.	2.4	44
25	Evaluation of alginate–chitosan bioadhesive beads as a drug delivery system for the controlled release of theophylline. Journal of Applied Polymer Science, 2009, 111, 2452-2459.	1.3	41
26	Superabsorbent polyacrylamide grafted carboxymethyl cellulose pH sensitive hydrogel: I. Preparation and characterization. Desalination and Water Treatment, 2013, 51, 3196-3206.	1.0	41
27	Development of Polyvinyl Alcohol/Kaolin Sponges Stimulated by Marjoram as Hemostatic, Antibacterial, and Antioxidant Dressings for Wound Healing Promotion. International Journal of Molecular Sciences, 2021, 22, 13050.	1.8	41
28	Development of novel chitosan schiff base derivatives for cationic dye removal: methyl orange model. Desalination and Water Treatment, 2016, 57, 22632-22645.	1.0	40
29	Development of Cross linked Chitosan/Alginate Polyelectrolyte Proton Exchanger Membranes for Fuel Cell Applications. International Journal of Electrochemical Science, 2017, 12, 3840-3858.	0.5	39
30	Nano-sulphonated poly (glycidyl methacrylate) cations exchanger for cadmium ions removal: Effects of operating parameters. Desalination, 2011, 279, 152-162.	4.0	38
31	Development of thermo-sensitive poly N-isopropyl acrylamide grafted chitosan derivatives. Journal of Applied Pharmaceutical Science, 0, , 1-6.	0.7	36
32	Influence of the microenvironment on the activity of enzymes immobilized on Teflon membranes grafted by Î ³ -radiation. Journal of Molecular Catalysis B: Enzymatic, 1999, 7, 251-261.	1.8	35
33	Formation of zinc oxide nanoparticles using alginate as a template for purification of wastewater. Environmental Nanotechnology, Monitoring and Management, 2018, 10, 112-121.	1.7	33
34	Zero-valent iron supported-lemon derived biochar for ultra-fast adsorption of methylene blue. Biomass Conversion and Biorefinery, 2024, 14, 1697-1709.	2.9	32
35	Cephalexin synthesis by immobilised penicillin G acylase under non-isothermal conditions: reduction of diffusion limitation. Journal of Molecular Catalysis B: Enzymatic, 2001, 15, 163-172.	1.8	30
36	Affinity Covalent Immobilization of Glucoamylase onto ϕBenzoquinone-Activated Alginate Beads: II. Enzyme Immobilization and Characterization. Applied Biochemistry and Biotechnology, 2011, 164, 45-57.	1.4	30

#	Article	IF	CITATIONS
37	Covalent immobilization of penicillin G acylase onto amineâ€functionalized PVC membranes for 6â€APA production from penicillin hydrolysis process. II. Enzyme immobilization and characterization. Journal of Applied Polymer Science, 2012, 125, 3820-3828.	1.3	30
38	Fabrication of a novel low-cost superoleophilic nonanyl chitosan-poly (butyl acrylate) grafted copolymer for the adsorptive removal of crude oil spills. International Journal of Biological Macromolecules, 2019, 140, 588-599.	3.6	30
39	Non-isothermal cephalexin hydrolysis by penicillin G acylase immobilized on grafted nylon membranes. Journal of Molecular Catalysis B: Enzymatic, 2000, 8, 221-232.	1.8	29
40	Characterization of the activity of penicillin G acylase immobilized onto nylon membranes grafted with different acrylic monomers by means of γ-radiation. Journal of Molecular Catalysis B: Enzymatic, 2000, 8, 233-244.	1.8	28
41	Sulphonated poly (glycidyl methacrylate) grafted cellophane membranes: novel application in polyelectrolyte membrane fuel cell (PEMFC). Journal of Polymer Research, 2013, 20, 1.	1.2	27
42	Novel grafted nafion membranes for protonâ€exchange membrane fuel cell applications. Journal of Applied Polymer Science, 2011, 119, 120-133.	1.3	24
43	Preparation and characterization of novel grafted cellophaneâ€phosphoric acidâ€doped membranes for proton exchange membrane fuelâ€cell applications. Journal of Applied Polymer Science, 2012, 123, 3710-3724.	1.3	24
44	Removal of cadmium ions from synthetic aqueous solutions with a novel nanosulfonated poly(glycidyl methacrylate) cation exchanger: Kinetic and equilibrium studies. Journal of Applied Polymer Science, 2010, 118, 3111-3122.	1.3	23
45	Optimal Immobilization of <i>β</i> -Galactosidase onto <i>β</i> -Carrageenan Gel Beads Using Response Surface Methodology and Its Applications. Scientific World Journal, The, 2014, 2014, 1-7.	0.8	23
46	Titanium Dioxide/Phosphorous-Functionalized Cellulose Acetate Nanocomposite Membranes for DMFC Applications: Enhancing Properties and Performance. ACS Omega, 2021, 6, 17194-17202.	1.6	23
47	Non-isothermal bioreactors utilizing catalytic Teflon membranes. Journal of Membrane Science, 1998, 146, 237-248.	4.1	22
48	Immobilized metal ions cellophane–PGMAâ€grafted membranes for affinity separation of βâ€galactosidase enzyme. I. Preparation and characterization. Journal of Applied Polymer Science, 2009, 111, 2647-2656.	1.3	22
49	Employment of immobilised lipase from Candida rugosa for the bioremediation of waters polluted by dimethylphthalate, as a model of endocrine disruptors. Journal of Molecular Catalysis B: Enzymatic, 2010, 62, 133-141.	1.8	22
50	Effective Elimination of Contaminant Antibiotics Using High-Surface-Area Magnetic-Functionalized Graphene Nanocomposites Developed from Plastic Waste. Materials, 2020, 13, 1517.	1.3	22
51	Development of novel iota carrageenan-g-polyvinyl alcohol polyelectrolyte membranes for direct methanol fuel cell application. Polymer Bulletin, 2020, 77, 4895-4916.	1.7	21
52	Removal of methylene blue dye from synthetic aqueous solutions using novel phosphonate cellulose acetate membranes: adsorption kinetic, equilibrium, and thermodynamic studies. , 0, 144, 272-285.		21
53	Enzyme-catalyzed modification of PES surfaces: Reduction in adsorption of BSA, dextrin and tannin. Journal of Colloid and Interface Science, 2012, 378, 191-200.	5.0	20
54	Formulation and Antibacterial Activity Evaluation of Quaternized Aminochitosan Membrane for Wound Dressing Applications. Polymers, 2021, 13, 2428.	2.0	20

#	Article	IF	CITATIONS
55	Immobilization of ?-galactosidase on nylon membranes grafted with diethylenglycol dimethacrylate (DGDA) by ?-radiation: Effect of membrane pore size. Advances in Polymer Technology, 1999, 18, 109-123.	0.8	19
56	Poly (acrylonitrile-co-methyl methacrylate) nanoparticles: I. Preparation and characterization. Arabian Journal of Chemistry, 2017, 10, 1153-1166.	2.3	19
57	Characterization of the activity of ?-galactosidase immobilized on Teflon membranes preactivated with different monomers by ?-irradiation. Journal of Applied Polymer Science, 1998, 68, 613-623.	1.3	18
58	?-galactosidase immobilization on premodified Teflon membranes using ?-radiation grafting. Journal of Applied Polymer Science, 1998, 68, 625-636.	1.3	18
59	Affinity Covalent Immobilization of Glucoamylase onto ϕBenzoquinone Activated Alginate Beads: I. Beads Preparation and Characterization. Applied Biochemistry and Biotechnology, 2011, 164, 10-22.	1.4	18
60	Removal of methylene blue dye from aqueous medium by nano poly acrylonitrile particles. Desalination and Water Treatment, 2012, 44, 151-160.	1.0	18
61	Novel Proton Exchange Membranes Based on Sulfonated Cellulose Acetate for Fuel Cell Applications: Preparation and Characterization. International Journal of Electrochemical Science, 2016, 11, 10150-10171.	0.5	18
62	Fabrication of semi-interpenetrated PVA/PAMPS hydrogel as a reusable adsorbent for cationic methylene blue dye: isotherms, kinetics and thermodynamics studies. Polymer Bulletin, 2021, 78, 6649-6673.	1.7	18
63	Laccase-catalyzed modification of PES membranes with 4-hydroxybenzoic acid and gallic acid. Journal of Membrane Science, 2012, 394-395, 69-79.	4.1	17
64	Novel Aminated Cellulose Acetate Membranes for Direct Methanol Fuel Cells (DMFCs). International Journal of Electrochemical Science, 2017, , 4301-4318.	0.5	17
65	Novel nanocomposite membranes based on cross-linked eco-friendly polymers doped with sulfated titania nanotubes for direct methanol fuel cell application. Nanomaterials and Nanotechnology, 2020, 10, 184798042096436.	1.2	17
66	Covalent immobilization of βâ€galactosidase onto aminoâ€functionalized PVC microspheres. Journal of Applied Polymer Science, 2012, 125, 1724-1735.	1.3	16
67	Development of Novel Phosphorylated Cellulose Acetate Polyelectrolyte Membranes for Direct Methanol Fuel Cell Application. International Journal of Electrochemical Science, 0, , 3467-3491.	0.5	16
68	Isothermal and non-isothermal lactose hydrolysis by means of β-galactosidase immobilized on a single double-grafted teflon membrane. Journal of Membrane Science, 2000, 168, 143-158.	4.1	15
69	Development of polystyreneÂbased nanoparticles ionsÂexchange resin for water purification applications. Desalination and Water Treatment, 2016, 57, 14810-14823.	1.0	15
70	Development novel eco-friendly proton exchange membranes doped with nano sulfated zirconia for direct methanol fuel cells. Journal of Polymer Research, 2021, 28, 1.	1.2	15
71	Development of nano-crosslinked polyacrylonitrile ions exchanger particles for dyes removal. Desalination and Water Treatment, 2016, 57, 4255-4266.	1.0	14
72	Removal of methylparaben from synthetic aqueous solutions using polyacrylonitrile beads: kinetic and equilibrium studies. Environmental Science and Pollution Research, 2017, 24, 1270-1282.	2.7	14

Mohamed Mohy Eldin

#	Article	IF	CITATIONS
73	Click Grafting of Chitosan onto PVC Surfaces for Biomedical Applications. Advances in Polymer Technology, 2018, 37, 38-49.	0.8	14
74	Antimicrobial activity of novel modified aminated chitosan with aromatic esters. Polymer Bulletin, 2020, 77, 1631-1647.	1.7	14
75	Development of low-cost chitosan derivatives based on marine waste sources as oil adsorptive materials: I. Preparation and characterization. , 0, 72, 41-51.		13
76	Glucose determination by means of a new reactor/sensor system operating under non-isothermal conditions. Enzyme and Microbial Technology, 2000, 26, 593-601.	1.6	12
77	Preparation and characterization of grafted cellophane membranes for affinity separation of Hisâ€ŧag Chitinase. Advances in Polymer Technology, 2011, 30, 191-202.	0.8	12
78	Preparation and characterization of imino diacetic acid functionalized alginate beads for removal of contaminants from waste water: I. methylene blue cationic dye model. Desalination and Water Treatment, 2012, 40, 15-23.	1.0	12
79	Radical-scavenging activity of glutathione, chitin derivatives and their combination‡. Chemical Papers, 2016, 70, .	1.0	12
80	Removal of methylene blue by amidoxime polyacrylonitrile-grafted cotton fabrics: Kinetic, equilibrium, and simulation studies. Fibers and Polymers, 2016, 17, 1884-1897.	1.1	10
81	Development of grafted cotton fabrics ions exchanger for dye removal applications: methylene blue model. Desalination and Water Treatment, 2016, 57, 22049-22060.	1.0	10
82	Organic-Inorganic Novel Green Cation Exchange Membranes for Direct Methanol Fuel Cells. Energies, 2021, 14, 4686.	1.6	10
83	Carboxylated alginate hydrogel beads for methylene blue removal: formulation, kinetic and isothermal studies. , 0, 168, 308-323.		10
84	Removal of oil spills by novel amphiphilic Chitosan-g-Octanal Schiff base polymer developed by click grafting technique. Journal of Saudi Chemical Society, 2021, 25, 101369.	2.4	10
85	Covalent Immobilization of βâ€Galactosidase onto Aminoâ€Functionalized Polyvinyl Chloride Microspheres: Enzyme Immobilization and Characterization. Advances in Polymer Technology, 2014, 33,	0.8	9
86	Novel immobilized Cu+2 ion grafted cellophane membranes for affinity separation of His-Tag Chitinase. Arabian Journal of Chemistry, 2017, 10, S3652-S3663.	2.3	9
87	Kinetics, isotherms and thermodynamics of oil spills removal by novel amphiphilic Chitosan-g-Octanal Schiff base polymer developed by click grafting technique. Polymer Bulletin, 2023, 80, 4813-4840.	1.7	9
88	Development of novel acid–base ions exchanger for basic dye removal: phosphoric acid doped pyrazole-g-polyglycidyl methacrylate. Desalination and Water Treatment, 2016, 57, 24047-24055.	1.0	8
89	Development of iron oxide nanoparticles using alginate hydrogel template for chromium (VI) ions removal. , 0, 175, 229-243.		8
90	Kinetic and thermodynamic studies for the sorptive removal of crude oil spills using a low-cost		8

chitosan-poly (butyl acrylate) grafted copolymer. , 0, 192, 213-225.

#	Article	IF	CITATIONS
91	Novel immobilized Cu2+-aminated poly (methyl methacrylate) grafted cellophane membranes for affinity separation of His-Tag chitinase. Polymer Bulletin, 2020, 77, 135-151.	1.7	7
92	Development of highly ionic conductive cellulose acetate-g-poly (2-acrylamido-2-methylpropane) Tj ETQq0 0 0 rg 2021, 25, 101318.	gBT /Overl 2.4	ock 10 Tf 50 7 7
93	Efficient eco-friendly crude oil adsorptive chitosan derivatives: kinetics, equilibrium and thermodynamic studies. , 0, 159, 269-281.		7
94	Removal of oil spills by novel developed amphiphilic chitosan-g-citronellal schiff base polymer. Scientific Reports, 2021, 11, 19879.	1.6	7
95	Covalent immobilization of penicillin G acylase onto chemically activated surface of poly(vinyl) Tj ETQq1 1 0.784 Optimization of surface modification and its characterization. Journal of Applied Polymer Science, 2012, 124, F27.	314 rgBT 1.3	/Overlock 10
96	Removal of methylene blue from synthetic aqueous solutions with novel phosphoric acid-doped pyrazole-g-poly(glycidyl methacrylate) particles: kinetic and equilibrium studies. Desalination and Water Treatment, 2016, 57, 27243-27258.	1.0	6
97	Simple Self-assembly Synthesis for Cost-Effective Alkaline Fuel Cell Bi-functional Electrocatalyst Synthesized from Polyethylene Terephthalate Waste Bottles. Journal of Electronic Materials, 2020, 49, 1009-1016.	1.0	6
98	Development of novel cellulose acetate-g-poly(sodium 4-styrenesulfonate) proton conducting polyelectrolyte polymer. Journal of Saudi Chemical Society, 2021, 25, 101327.	2.4	6
99	Development of Novel Amphiphilic Pyrazoleâ€ <i>g</i> â€PolyGlycidyl methacrylateâ€Based Polymers with Potential Antimicrobial Activity. Advances in Polymer Technology, 2018, 37, 706-713.	0.8	5
100	Kinetic and isothermal studies of manganese (VII) ions removal using Amberlite IRA-420 anion exchanger. , 0, 72, 30-40.		5
101	Poly (methacrylic acid) grafted regenerated cellulose ions exchangers membranes for Cu (II) ion adsorption: kinetic, isotherm, and thermodynamic studies. , 0, 178, 182-192.		5
102	Methylene blue removal by nano-poly acrylonitrile particles: modelling and formulation studies. , 0, 178, 322-336.		5
103	Novel sulfonated poly(glycidyl methacrylate) grafted Nafion membranes for fuel cell applications. Polymer Bulletin, 2017, 74, 5195-5220.	1.7	4
104	A Highly Selective Novel Green Cation Exchange Membrane Doped with Ceramic Nanotubes Material for Direct Methanol Fuel Cells. Energies, 2021, 14, 5664.	1.6	4
105	Ultra-fast removal of cadmium and lead from wastewater using high-efficient adsorbent derived from plastic waste: statistical modeling, kinetic and isotherm studies. , 0, 173, 394-408.		4
106	Removal of chromium (VI) metal ions using amberlite IRA-420 anions exchanger. , 0, 60, 335-342.		3
107	Development of nano-crosslinked polyacrylonitrile ions exchanger particles for dye removal: kinetic, isotherm, and thermodynamic studies. , 0, 175, 293-303.		3
108	Separation of nickel(II) ions from synthetic aqueous solutions with novel dimethylglyoxime-modified Amberlite IRA-420: kinetic and equilibrium studies. , 0, 81, 123-132.		2

#	Article	IF	CITATIONS
109	Removal of methylene blue dye from synthetic aqueous solutions using dimethylglyoxime modified amberlite IRA-420: kinetic, equilibrium and thermodynamic studies. , 0, 181, 399-411.		2
110	Development of smart alginate/chitosan grafted microcapsules for colon site-specific drug delivery. Egyptian Journal of Chemistry, 2019, .	0.1	2
111	Synthesis of macroporous poly(methyl methacrylate) derivatives and their use in organic synthesis. Acta Polymerica, 1989, 40, 129-132.	1.4	1
112	Smart Biopolymer Hydrogels Developments for Biotechnological Applications. Polymers and Polymeric Composites, 2018, , 1-21.	0.6	0
113	Smart Biopolymer Hydrogels Developments for Biotechnological Applications. Polymers and Polymeric Composites, 2019, , 1515-1535.	0.6	0
114	Cellophane Membranes. , 2014, , 1-2.		0
115	Modified Cellophane Membrane. , 2014, , 1-2.		0
116	Cellophane Membranes. , 2016, , 344-345.		0
117	Kinetic and equilibrium studies of chromium(VI) metal ions adsorption using amberlite IRA-420 anions exchanger. , 0, 62, 377-386.		0
118	Effect of tween 20 as Plasticizer on cinnamyl chitosan membranes: Preparation, characterization and antimicrobial evaluation. Egyptian Journal of Chemistry, 2019, .	0.1	0