
Carla LÃ³pez-Causapé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8247856/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resistance Updates, 2015, 21-22, 41-59.	6.5	475
2	Spread of a SARS-CoV-2 variant through Europe in the summer of 2020. Nature, 2021, 595, 707-712.	13.7	363
3	The Versatile Mutational Resistome of Pseudomonas aeruginosa. Frontiers in Microbiology, 2018, 9, 685.	1.5	181
4	Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. International Journal of Antimicrobial Agents, 2020, 56, 106196.	1.1	147
5	Evolution of the Pseudomonas aeruginosa mutational resistome in an international Cystic Fibrosis clone. Scientific Reports, 2017, 7, 5555.	1.6	117
6	Genomics and Susceptibility Profiles of Extensively Drug-Resistant Pseudomonas aeruginosa Isolates from Spain. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	108
7	Deciphering the Resistome of the Widespread Pseudomonas aeruginosa Sequence Type 175 International High-Risk Clone through Whole-Genome Sequencing. Antimicrobial Agents and Chemotherapy, 2016, 60, 7415-7423.	1.4	99
8	Spanish nationwide survey on Pseudomonas aeruginosa antimicrobial resistance mechanisms and epidemiology. Journal of Antimicrobial Chemotherapy, 2019, 74, 1825-1835.	1.3	92
9	Clonal Dissemination, Emergence of Mutator Lineages and Antibiotic Resistance Evolution in Pseudomonas aeruginosa Cystic Fibrosis Chronic Lung Infection. PLoS ONE, 2013, 8, e71001.	1.1	69
10	Using the Electronic Nose to Identify Airway Infection during COPD Exacerbations. PLoS ONE, 2015, 10, e0135199.	1.1	62
11	Activity of Imipenem-Relebactam against a Large Collection of Pseudomonas aeruginosa Clinical Isolates and Isogenic β-Lactam-Resistant Mutants. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	54
12	Ceftolozane/tazobactam for the treatment of multidrug resistant Pseudomonas aeruginosa: experience from the Balearic Islands. European Journal of Clinical Microbiology and Infectious Diseases, 2018, 37, 2191-2200.	1.3	53
13	The problems of antibiotic resistance in cystic fibrosis and solutions. Expert Review of Respiratory Medicine, 2015, 9, 73-88.	1.0	49
14	Rapid evolution and host immunity drive the rise and fall of carbapenem resistance during an acute Pseudomonas aeruginosa infection. Nature Communications, 2021, 12, 2460.	5.8	47
15	Evolution of the Pseudomonas aeruginosa Aminoglycoside Mutational Resistome In Vitro and in the Cystic Fibrosis Setting. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	44
16	Interplay among Resistance Profiles, High-Risk Clones, and Virulence in the Caenorhabditis elegansPseudomonas aeruginosa Infection Model. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	39
17	Predicting Pseudomonas aeruginosa susceptibility phenotypes from whole genome sequence resistome analysis. Clinical Microbiology and Infection, 2021, 27, 1631-1637.	2.8	36
18	The first wave of the COVID-19 epidemic in Spain was associated with early introductions and fast spread of a dominating genetic variant. Nature Genetics, 2021, 53, 1405-1414.	9.4	35

#	Article	IF	CITATIONS
19	Characterization of Hypermutator Pseudomonas aeruginosa Isolates from Patients with Cystic Fibrosis in Australia. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	30
20	Emergence of Resistance to Novel Cephalosporin‑´Î²-Lactamase Inhibitor Combinations through the Modification of the Pseudomonas aeruginosa MexCD-OprJ Efflux Pump. Antimicrobial Agents and Chemotherapy, 2021, 65, e0008921.	1.4	29
21	Sequential Treatment of Biofilms with Aztreonam and Tobramycin Is a Novel Strategy for Combating Pseudomonas aeruginosa Chronic Respiratory Infections. Antimicrobial Agents and Chemotherapy, 2016, 60, 2912-2922.	1.4	25
22	Susceptibility profiles and resistance genomics of <i>Pseudomonas aeruginosa</i> isolates from European ICUs participating in the ASPIRE-ICU trial. Journal of Antimicrobial Chemotherapy, 2022, 77, 1862-1872.	1.3	23
23	Nosocomial dissemination of VIM-2-producing ST235 Pseudomonas aeruginosa in Lithuania. European Journal of Clinical Microbiology and Infectious Diseases, 2016, 35, 195-200.	1.3	21
24	Evaluation of Ceftolozane-Tazobactam in Combination with Meropenem against Pseudomonas aeruginosa Sequence Type 175 in a Hollow-Fiber Infection Model. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	21
25	Antibiotic resistance and population structure of cystic fibrosis Pseudomonas aeruginosa isolates from a Spanish multi-centre study. International Journal of Antimicrobial Agents, 2017, 50, 334-341.	1.1	20
26	Susceptibility to R-pyocins of Pseudomonas aeruginosa clinical isolates from cystic fibrosis patients. Journal of Antimicrobial Chemotherapy, 2018, 73, 2770-2776.	1.3	19
27	Association between Pseudomonas aeruginosa O-antigen serotypes, resistance profiles and high-risk clones: results from a Spanish nationwide survey. Journal of Antimicrobial Chemotherapy, 2019, 74, 3217-3220.	1.3	18
28	Temperate Bacteriophages (Prophages) in Pseudomonas aeruginosa Isolates Belonging to the International Cystic Fibrosis Clone (CC274). Frontiers in Microbiology, 2020, 11, 556706.	1.5	18
29	Time-Kill Evaluation of Antibiotic Combinations Containing Ceftazidime-Avibactam against Extensively Drug-Resistant Pseudomonas aeruginosa and Their Potential Role against Ceftazidime-Avibactam-Resistant Isolates. Microbiology Spectrum, 2021, 9, e0058521.	1.2	18
30	Surfactant Protein A Recognizes Outer Membrane Protein OprH on <i>Pseudomonas aeruginosa</i> Isolates From Individuals With Chronic Infection. Journal of Infectious Diseases, 2016, 214, 1449-1455.	1.9	17
31	Colistin plus meropenem combination is synergistic in vitro against extensively drug-resistant Pseudomonas aeruginosa, including high-risk clones. Journal of Global Antimicrobial Resistance, 2019, 18, 37-44.	0.9	16
32	<i>In Vivo</i> Evolution of GES β-Lactamases Driven by Ceftazidime/Avibactam Treatment of Pseudomonas aeruginosa Infections. Antimicrobial Agents and Chemotherapy, 2021, 65, e0098621.	1.4	14
33	Comparative Analysis of Peptidoglycans From Pseudomonas aeruginosa Isolates Recovered From Chronic and Acute Infections. Frontiers in Microbiology, 2019, 10, 1868.	1.5	12
34	Profiling the susceptibility of Pseudomonas aeruginosa strains from acute and chronic infections to cell-wall-targeting immune proteins. Scientific Reports, 2019, 9, 3575.	1.6	10
35	Emergence of Resistance to Novel β-Lactam–β-Lactamase Inhibitor Combinations Due to Horizontally Acquired AmpC (FOX-4) in <i>Pseudomonas aeruginosa</i> Sequence Type 308. Antimicrobial Agents and Chemotherapy, 2019, 64, .	1.4	10
36	El virus respiratorio sincitial como causante de infecciones respiratorias agudas en el adulto. ¿Una enfermedad emergente?. Revista Clinica Espanola, 2015, 215, 418-419.	0.2	9

Carla López-Causapé

#	Article	IF	CITATIONS
37	Microbiological diagnostic procedures for respiratory cystic fibrosis samples in Spain: towards standard of care practices. BMC Microbiology, 2014, 14, 335.	1.3	8
38	Insights into the evolution of the mutational resistome of <i>Pseudomonas aeruginosa</i> in cystic fibrosis. Future Microbiology, 2017, 12, 1445-1448.	1.0	8
39	Efficacy of Ceftolozane-Tazobactam in Combination with Colistin against Extensively Drug-Resistant Pseudomonas aeruginosa, Including High-Risk Clones, in an <i>In Vitro</i> Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	8
40	Impact of ceftolozane/tazobactam concentrations in continuous infusion against extensively drug-resistant Pseudomonas aeruginosa isolates in a hollow-fiber infection model. Scientific Reports, 2021, 11, 22178.	1.6	6
41	<i>In Vivo</i> Selection of Moxifloxacin-Resistant Clostridium difficile. Antimicrobial Agents and Chemotherapy, 2012, 56, 2788-2789.	1.4	4
42	Emergence of high-level and stable metronidazole resistance in Clostridioides difficile. International Journal of Antimicrobial Agents, 2020, 55, 105830.	1.1	4
43	A Large Multicenter Prospective Study of Community-Onset Healthcare Associated Bacteremic Urinary Tract Infections in the Era of Multidrug Resistance: Even Worse than Hospital Acquired Infections?. Infectious Diseases and Therapy, 2021, 10, 2677-2699.	1.8	4
44	A Genomic Snapshot of the SARS-CoV-2 Pandemic in the Balearic Islands. Frontiers in Microbiology, 2021, 12, 803827.	1.5	3
45	Comparison of Ceftolozane/Tazobactam Infusion Regimens in a Hollow-Fiber Infection Model against Extensively Drug-Resistant Pseudomonas aeruginosa Isolates. Microbiology Spectrum, 0, , .	1.2	1
46	Evaluation of Rapid Polymyxin Pseudomonas test in clinical Pseudomonas aeruginosa isolates with various degrees of multidrug resistance. JAC-Antimicrobial Resistance, 2021, 3, dlab104.	0.9	0