Laura Elena Muresan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8247743/publications.pdf

Version: 2024-02-01

687363 610901 39 600 13 24 citations h-index g-index papers 39 39 39 655 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Luminescence properties of europium–terbium double activated calcium tungstate phosphor. Solid State Communications, 2004, 131, 307-311.	1.9	112
2	Synthesis and characterisation of rare earth oxysulphide phosphors. I. Studies on the preparation of Gd2O2S:Tb phosphor by the flux method. Optical Materials, 2004, 27, 559-565.	3.6	56
3	Morpho-structural and luminescent investigations of niobium activated yttrium tantalate powders. Journal of Alloys and Compounds, 2009, 471, 524-529.	5.5	39
4	Tunable luminescence of broadband-excited and narrow line green emitting Y 2 SiO 5 :Ce $3+$, Tb $3+$ phosphor. Journal of Alloys and Compounds, 2016, 658, 356-366.	5.5	38
5	Lattice parameter and luminescence properties of europium activated yttrium oxide. Solid State Communications, 2005, 133, 183-186.	1.9	36
6	Synthesis and characterisation of terbium activated yttrium tantalate phosphor. Journal of Alloys and Compounds, 2010, 497, 201-209.	5.5	32
7	Studies on the synthesis of europium activated yttrium oxide by wet-chemical method. Journal of Alloys and Compounds, 2009, 471, 421-427.	5.5	28
8	Studies on Y 2 SiO 5 :Ce phosphors prepared by gel combustion using new fuels. Journal of Alloys and Compounds, 2014, 615, 795-803.	5 . 5	26
9	Studies on Y2O3:Eu phosphor with different particle size prepared by wet chemical method. Journal of Alloys and Compounds, 2009, 483, 346-349.	5.5	23
10	Synthesis and characterisation of europium activated yttrium oxide fine powders. Journal of Alloys and Compounds, 2007, 434-435, 809-812.	5.5	22
11	Effect of the europium doping on the structural and luminescent properties of yttrium aluminum garnet. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 248-253.	3.5	20
12	Structural and luminescence effects of Ga co-doping on Ce-doped yttrium aluminate based phosphors. Journal of Alloys and Compounds, 2016, 666, 447-453.	5. 5	16
13	Studies concerning the properties of some europium activated phosphors based on yttrium tantalate. Physics Procedia, 2009, 2, 185-190.	1.2	13
14	Synthesis and influence of ultrasonic treatment on luminescence of Mn incorporated ZnS nanoparticles. Optical Materials, 2017, 72, 533-539.	3.6	13
15	Investigation of thermal decomposition of yttrium–aluminum-based precursors for YAG phosphors. Journal of Thermal Analysis and Calorimetry, 2012, 110, 341-348.	3.6	11
16	Effect of ultrasound treatment on the morpho-structural and luminescent characteristics of cerium doped yttrium silicate phosphors. Materials Research Bulletin, 2015, 68, 295-301.	5.2	11
17	Studies on terbium activated yttrium based tantalate phosphors. Radiation Measurements, 2010, 45, 300-303.	1.4	10
18	Influence of vinyltriethoxysilane concentration on structural and luminescent characteristics of cerium doped yttrium based silicate phosphors. Ceramics International, 2015, 41, 13179-13188.	4.8	9

#	Article	IF	Citations
19	The role of calcination temperature on structural and luminescence behaviour of novel apatite-based Ca2Y 8(SiO4)6O2: Ce3+,Tb3+ phosphors. Applied Radiation and Isotopes, 2017, 130, 188-197.	1.5	9
20	Nanocrystalline semiconductor materials for solar water-splitting. Journal of Alloys and Compounds, 2009, 483, 445-449.	5.5	8
21	Rare earth activated yttrium aluminate phosphors with modulated luminescence. Luminescence, 2016, 31, 929-936.	2.9	8
22	Dependency of luminescence properties of Y[sub 2]O[sub 3]:Eu on the activator incorporation degree and lattice parameter. Journal of the Society for Information Display, 2005, 13, 309.	2.1	7
23	Thermal behavior of precursors for synthesis of Y2SiO5:Ce phosphor via gel combustion. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1565-1576.	3.6	6
24	Optical spectroscopy of the Ce-doped multicomponent garnets. Applied Radiation and Isotopes, 2016, 114, 114-120.	1.5	6
25	Preparation and characterization of Yttrium based luminescence phosphors. Optical Materials, 2017, 74, 150-158.	3.6	6
26	Studies on the synthesis of cerium activated yttrium aluminate phosphor by wet-chemical route. Physics Procedia, 2009, 2, 603-616.	1.2	5
27	Studies on terbium doped apatite phosphors prepared by precipitation under microwave conditions. Journal of Alloys and Compounds, 2018, 755, 135-146.	5.5	5
28	Morpho-structural and luminescence investigations on yttrium silicate based phosphors prepared with different precipitating agents. Open Chemistry, 2014, 12, 1023-1031.	1.9	4
29	Synthesis of silicate apatite phosphors with enhanced luminescence via optimized precipitation technique through pH control. Journal of Sol-Gel Science and Technology, 2020, 96, 498-510.	2.4	4
30	<title>Yttrium-tantalate-based phosphors for x-ray intensifying screen</title> ., 2004, 5581, 781.		3
31	The influence of synthesis methods on the morpho - structural and luminescent characteristics of rare earth silicate phosphors. , 2013, , .		3
32	Studies regarding ZnS:Mn nanopowders prepared from single source molecular precursor using microwave-assisted decomposition. Materials Research Bulletin, 2016, 84, 57-64.	5.2	3
33	Comparative study on blue-turquoise silicate apatite phosphors prepared via different synthesis routes. Journal of Sol-Gel Science and Technology, 2019, 89, 807-819.	2.4	3
34	Influence of preparative conditions for obtaining ZnS:Mn nanoparticles using ultrasound-assisted precipitation. Colloid and Polymer Science, 2017, 295, 2337.	2.1	2
35	Morpho-structural and electrical characterization of Bi-doped apatite-type lanthanum silicates prepared by gel-combustion. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	2
36	<title>Photo- and cathodoluminescence investigation of CaWo4:Eu,Tb phosphors</title> ., 2004, 5581, 754.		1

#	Article	IF	CITATIONS
37	<title>Studies on the synthesis of terbium-activated gadolinium oxysulphide phosphors</title> ., 2004,		O
38	Effect of Cu2+ on the optical properties of zinc hydroxy-carbonate phosphors prepared in different synthesis conditions. Chemical Papers, 0 , 1 .	2.2	0
39	Peculiarities on methyl orange adsorption by porous ZnIn2S4 prepared in different conditions. Journal of Nanoparticle Research, 2022, 24, 1.	1.9	0