
## Xiaofeng Tong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8247626/publications.pdf Version: 2024-02-01



XIAOFENIC TONC

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Nano-LaCoO3 infiltrated BaZr0.8Y0.2O3â^ electrodes for steam splitting in protonic ceramic electrolysis cells. , 2022, 1, 100003.                                                                                               |      | 10        |
| 2  | Study of solid oxide electrolysis cells operated in potentiostatic mode: Effect of operating temperature on durability. Chemical Engineering Journal, 2021, 417, 129260.                                                        | 12.7 | 42        |
| 3  | Comparison of microstructural evolution of fuel electrodes in solid oxide fuel cells and electrolysis cells. Journal of Power Sources, 2020, 450, 227599.                                                                       | 7.8  | 102       |
| 4  | lmproving oxygen incorporation rate on (La0.6Sr0.4)0.98FeO3-δvia Pr2Ni1-xCuxO4+δsurface decoration.<br>Journal of Power Sources, 2020, 457, 228035.                                                                             | 7.8  | 14        |
| 5  | An Up-scalable, Infiltration-Based Approach for Improving the Durability of Ni/YSZ Electrodes for Solid Oxide Cells. Journal of the Electrochemical Society, 2020, 167, 024519.                                                 | 2.9  | 23        |
| 6  | Enhanced Activity of Pr <sub>6</sub> O <sub>11</sub> and CuO Infiltrated<br>Ce <sub>0.9</sub> Gd <sub>0.1</sub> O <sub>2</sub> Based Composite Oxygen Electrodes. Journal of the<br>Electrochemical Society, 2020, 167, 024505. | 2.9  | 16        |
| 7  | Promotion of oxygen reduction and evolution by applying a nanoengineered hybrid catalyst on cobalt free electrodes for solid oxide cells. Journal of Materials Chemistry A, 2020, 8, 9039-9048.                                 | 10.3 | 22        |
| 8  | Large-area solid oxide cells with La0.6Sr0.4CoO3- $\hat{1}'$ infiltrated oxygen electrodes for electricity generation and hydrogen production. Journal of Power Sources, 2020, 451, 227742.                                     | 7.8  | 43        |
| 9  | (Invited) Fuel Electrode Degradation for Solid Oxide Electrolysis Cells – How to Characterize It and<br>What to Do about It. ECS Meeting Abstracts, 2020, MA2020-01, 1474-1474.                                                 | 0.0  | 0         |
| 10 | (Invited) Lessons Learned from Operating a Solid Oxide Electrolysis Cell at 1.25 a/cm2 for One Year.<br>ECS Meeting Abstracts, 2020, MA2020-01, 1450-1450.                                                                      | 0.0  | 0         |
| 11 | (Invited) Mechanical Challenges in up-Scaling Soec. ECS Meeting Abstracts, 2020, MA2020-01, 1465-1465.                                                                                                                          | 0.0  | 0         |
| 12 | (Invited) Mechanical Challenges in up-Scaling SOEC. ECS Meeting Abstracts, 2020, MA2020-02, 2562-2562.                                                                                                                          | 0.0  | 0         |
| 13 | A 4 × 4 cm <sup>2</sup> Nanoengineered Solid Oxide Electrolysis Cell for Efficient and Durable<br>Hydrogen Production. ACS Applied Materials & Interfaces, 2019, 11, 25996-26004.                                               | 8.0  | 77        |
| 14 | Improving Oxygen Electrodes by Infiltration and Surface Decoration. ECS Transactions, 2019, 91, 1413-1424.                                                                                                                      | 0.5  | 8         |
| 15 | Optimization and Durability of Reversible Solid Oxide Cells. ECS Transactions, 2019, 91, 2631-2639.                                                                                                                             | 0.5  | 10        |
| 16 | Development of Solid Oxide Electrolysis Cells for Hydrogen Production at High Current Densities.<br>ECS Transactions, 2019, 91, 2433-2442.                                                                                      | 0.5  | 3         |
| 17 | Boosting the performance and durability of Ni/YSZ cathode for hydrogen production at high current densities <i>via</i> decoration with nano-sized electrocatalysts. Nanoscale, 2019, 11, 4394-4406.                             | 5.6  | 56        |
| 18 | Enhanced activities of nano-CeO2â^î´@430L composites by zirconium doping for hydrogen<br>electro-oxidation in solid oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41,<br>11331-11339.                       | 7.1  | 5         |

| #  | Article                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Shape-Dependent Activity of Ceria for Hydrogen Electro-Oxidation in Reduced-Temperature Solid Oxide<br>Fuel Cells. Small, 2015, 11, 5581-5588. | 10.0 | 27        |