Xiaofeng Tong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8247626/publications.pdf

Version: 2024-02-01

		933447	1058476
19	458	10	14
papers	citations	h-index	g-index
19	19	19	419
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Comparison of microstructural evolution of fuel electrodes in solid oxide fuel cells and electrolysis cells. Journal of Power Sources, 2020, 450, 227599.	7.8	102
2	A 4 \tilde{A} — 4 cm (sup) 2 (sup) Nanoengineered Solid Oxide Electrolysis Cell for Efficient and Durable Hydrogen Production. ACS Applied Materials & Samp; Interfaces, 2019, 11, 25996-26004.	8.0	77
3	Boosting the performance and durability of Ni/YSZ cathode for hydrogen production at high current densities <i>via</i> decoration with nano-sized electrocatalysts. Nanoscale, 2019, 11, 4394-4406.	5.6	56
4	Large-area solid oxide cells with La0.6Sr0.4CoO3-Î' infiltrated oxygen electrodes for electricity generation and hydrogen production. Journal of Power Sources, 2020, 451, 227742.	7.8	43
5	Study of solid oxide electrolysis cells operated in potentiostatic mode: Effect of operating temperature on durability. Chemical Engineering Journal, 2021, 417, 129260.	12.7	42
6	Shape-Dependent Activity of Ceria for Hydrogen Electro-Oxidation in Reduced-Temperature Solid Oxide Fuel Cells. Small, 2015, 11, 5581-5588.	10.0	27
7	An Up-scalable, Infiltration-Based Approach for Improving the Durability of Ni/YSZ Electrodes for Solid Oxide Cells. Journal of the Electrochemical Society, 2020, 167, 024519.	2.9	23
8	Promotion of oxygen reduction and evolution by applying a nanoengineered hybrid catalyst on cobalt free electrodes for solid oxide cells. Journal of Materials Chemistry A, 2020, 8, 9039-9048.	10.3	22
9	Enhanced Activity of Pr ₆ O ₁₁ and CuO Infiltrated Ce _{0.9} Gd _{0.1} O ₂ Based Composite Oxygen Electrodes. Journal of the Electrochemical Society, 2020, 167, 024505.	2.9	16
10	Improving oxygen incorporation rate on (La0.6Sr0.4)0.98FeO3-l´via Pr2Ni1-xCuxO4+l´surface decoration. Journal of Power Sources, 2020, 457, 228035.	7.8	14
11	Optimization and Durability of Reversible Solid Oxide Cells. ECS Transactions, 2019, 91, 2631-2639.	0.5	10
12	Nano-LaCoO3 infiltrated BaZr0.8Y0.2O3â^' electrodes for steam splitting in protonic ceramic electrolysis cells., 2022, 1, 100003.		10
13	Improving Oxygen Electrodes by Infiltration and Surface Decoration. ECS Transactions, 2019, 91, 1413-1424.	0.5	8
14	Enhanced activities of nano-CeO2â^î^@430L composites by zirconium doping for hydrogen electro-oxidation in solid oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41, 11331-11339.	7.1	5
15	Development of Solid Oxide Electrolysis Cells for Hydrogen Production at High Current Densities. ECS Transactions, 2019, 91, 2433-2442.	0.5	3
16	(Invited) Fuel Electrode Degradation for Solid Oxide Electrolysis Cells $\hat{a} \in \text{``How to Characterize It and What to Do about It. ECS Meeting Abstracts, 2020, MA2020-01, 1474-1474.}$	0.0	0
17	(Invited) Lessons Learned from Operating a Solid Oxide Electrolysis Cell at $1.25\mathrm{a/cm}2$ for One Year. ECS Meeting Abstracts, 2020, MA2020-01, $1450-1450$.	0.0	O
18	(Invited) Mechanical Challenges in up-Scaling Soec. ECS Meeting Abstracts, 2020, MA2020-01, 1465-1465.	0.0	0

XIAOFENG TONG

#	Article	IF	CITATIONS
19	(Invited) Mechanical Challenges in up-Scaling SOEC. ECS Meeting Abstracts, 2020, MA2020-02, 2562-2562.	0.0	O