Shao-Zhen Nie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8247607/publications.pdf Version: 2024-02-01

SHAO-ZHEN NIE

#	Article	IF	CITATIONS
1	Functional Phosphine Derivatives Having Stationary and Flexible Chiralities: Their Preparation and Chirality Controlling. Journal of Organic Chemistry, 2019, 84, 8423-8439.	1.7	6
2	Catalytic Hydrothiolation: Counterion-Controlled Regioselectivity. Journal of the American Chemical Society, 2019, 141, 3006-3013.	6.6	108
3	Stereoselective formation of P-N bonds via coupling of H-P species with amines and the addition of Grignard reagents to chiral <i>N</i> -phosphinoylimines. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 102-110.	0.8	3
4	Metal-Free One-Pot Synthesis of 3-Phosphinoylbenzofurans via Phospha-Michael Addition/Cyclization of H-Phosphine Oxides and in Situ Generated ortho-Quinone Methides. Organic Letters, 2018, 20, 477-480.	2.4	49
5	Enantioselective Coupling of Dienes and Phosphine Oxides. Journal of the American Chemical Society, 2018, 140, 16450-16454.	6.6	131
6	Palladium-Catalyzed Isomerization-Coupling Reactions of Allyl Chloride with Amines to Generate Functionalized Phosphorus Derivatives. Catalysts, 2018, 8, 194.	1.6	1
7	Nucleophilic Substitution of P-Stereogenic Chlorophosphines: Mechanism, Stereochemistry, and Stereoselective Conversions of Diastereomeric Secondary Phosphine Oxides to Tertiary Phosphines. Organic Letters, 2017, 19, 5384-5387.	2.4	27
8	Nonepimerizing Alkylation of H–P Species to Stereospecifically Generate <i>P</i> -Stereogenic Phosphine Oxides: A Shortcut to Bidentate Tertiary Phosphine Ligands. Journal of Organic Chemistry, 2017, 82, 9425-9434.	1.7	23
9	Double Asymmetric Induction During the Addition of (<i>R</i> _P)â€Menthyl Phenyl Phosphine Oxide to Chiral Aldimines. Chirality, 2016, 28, 132-135.	1.3	17
10	Preparation of Optically Pure Tertiary Phosphine Oxides via the Addition ofP-Stereogenic Secondary Phosphine Oxide to Activated Alkenes. Journal of Organic Chemistry, 2016, 81, 7644-7653.	1.7	32
11	Asymmetric induction in the addition of enantiomerically pure H -phosphinate to chiral aldimines: diastereoselective generation of α-amino phosphinates with P , C -stereogenic centers. Tetrahedron: Asymmetry, 2016, 27, 815-822.	1.8	6
12	Variable mechanism of nucleophilic substitution of P-stereogenic phosphoryl chloride with alkynyl metallic reagents. Organic and Biomolecular Chemistry, 2016, 14, 1702-1706.	1.5	4
13	One-Pot Process That Efficiently Generates Single Stereoisomers of 1,3-Bisphosphinylpropanes Having Five Chiral Centers. Organic Letters, 2015, 17, 142-145.	2.4	30
14	Efficient Construction of CN Double Bonds <i>via</i> Acceptorless Dehydrogenative Coupling. Advanced Synthesis and Catalysis, 2013, 355, 2179-2184.	2.1	39
15	Intramolecular Dehydrative Coupling of Tertiary Amines and Ketones Promoted by KO- <i>t</i> -Bu/DMF: A New Synthesis of Indole Derivatives. Organic Letters, 2013, 15, 6018-6021.	2.4	85
16	Unprecedented Construction of Câ•C Double Bonds via Ir-Catalyzed Dehydrogenative and Dehydrative Cross-Couplings. Organic Letters, 2013, 15, 2394-2397.	2.4	34
17	Organocatalytic conjugate addition of α-nitroacetates to β,γ-unsaturated α-keto esters and subsequent decarboxylation: synthesis of optically active δ-nitro-α-keto esters. Tetrahedron, 2012, 68, 9397-9404.	1.0	21
18	Organocatalytic Asymmetric Conjugate Addition and Cascade Acyl Transfer Reaction of α-Nitroketones. Journal of Organic Chemistry, 2011, 76, 6230-6239.	1.7	58

Shao-Zhen Nie

#	Article	IF	CITATIONS
19	Asymmetric synthesis of O-alkylated tetronic acid derivatives via an organocatalytic Mannich reaction and subsequent intramolecular cyclization. Tetrahedron: Asymmetry, 2011, 22, 1536-1541.	1.8	16
20	Organocatalytic asymmetric conjugate addition of malonates to 3-nitro-2H-chromenes. Tetrahedron: Asymmetry, 2010, 21, 2055-2059.	1.8	32
21	Organocatalytic asymmetric conjugate addition of cyclic 1,3-dicarbonyl compounds to β,γ-unsaturated α-ketoesters. Arkivoc, 2010, 2010, 229-243.	0.3	22
22	Efficient conjugate addition of carbonyl compounds to 3-nitro-2H-chromenes in the presence of bases. Arkivoc, 2010, 2010, 17-33.	0.3	7
23	Highly Enantioselective Synthesis of Nitrocyclopropanes via Organocatalytic Conjugate Addition of Bromomalonate to α,β-Unsaturated Nitroalkenes. Organic Letters, 2009, 11, 1583-1586.	2.4	87