
Jie Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8247378/publications.pdf Version: 2024-02-01

LE MANC

#	Article	IF	CITATIONS
1	Application of Electrospinning in Antibacterial Field. Nanomaterials, 2021, 11, 1822.	4.1	39
2	Facile Preparation of Tunicate-Inspired Chitosan Hydrogel Adhesive with Self-Healing and Antibacterial Properties. Polymers, 2021, 13, 4322.	4.5	12
3	A facile approach to obtain highly tough and stretchable LAPONITE®-based nanocomposite hydrogels. Soft Matter, 2020, 16, 8394-8399.	2.7	21
4	Access to Highly Tough Hydrogels by Polymer Modules for Application of Catalytic Reactors. Industrial & Engineering Chemistry Research, 2020, 59, 4977-4986.	3.7	3
5	Cyclodextrin Hydrogels: Rapid Removal of Aromatic Micropollutants and Adsorption Mechanisms. Journal of Chemical & Engineering Data, 2020, 65, 678-689.	1.9	32
6	Tungsten-Doped VO2/Starch Derivative Hybrid Nanothermochromic Hydrogel for Smart Window. Nanomaterials, 2019, 9, 970.	4.1	17
7	Preparation of a poly(acrylic acid) based hydrogel with fast adsorption rate and high adsorption capacity for the removal of cationic dyes. RSC Advances, 2019, 9, 21075-21085.	3.6	70
8	Mussel-Inspired Tough Double Network Hydrogel As Transparent Adhesive. ACS Applied Polymer Materials, 2019, 1, 2998-3007.	4.4	31
9	Redox-Controlled Voltage Responsive Micelles Assembled by Noncovalently Grafted Polymers for Controlled Drug Release. Macromolecules, 2019, 52, 1400-1407.	4.8	43
10	A Study of the Surface Adhesion and Rheology Properties of Cationic Conditioning Polymers. Industrial & Engineering Chemistry Research, 2019, 58, 9390-9396.	3.7	3
11	A mussel-inspired carboxymethyl cellulose hydrogel with enhanced adhesiveness through enzymatic crosslinking. Colloids and Surfaces B: Biointerfaces, 2019, 179, 462-469.	5.0	74
12	Directed Nanoscale Selfâ€Assembly of Low Molecular Weight Hydrogelators Using Catalytic Nanoparticles. Advanced Materials, 2018, 30, e1707408.	21.0	20
13	Chitosan cross-linked poly(acrylic acid) hydrogels: Drug release control and mechanism. Colloids and Surfaces B: Biointerfaces, 2017, 152, 252-259.	5.0	136
14	Hostâ€Guest Chemistry of Linked β―and γâ€Cyclodextrin Dimers and 1―and 2â€Naphthylâ€Sulfonamide Sub Poly(acrylate)s in Aqueous Solution. ChemistrySelect, 2017, 2, 1421-1430.	stituted	2
15	Spherical Polyelectrolyte Brushes as a Novel Platform for Paramagnetic Relaxation Enhancement and Passive Tumor Targeting. Advanced Healthcare Materials, 2017, 6, 1700071.	7.6	2
16	β-Cyclodextrin- and adamantyl-substituted poly(acrylate) self-assembling aqueous networks designed for controlled complexation and release of small molecules. Beilstein Journal of Organic Chemistry, 2017, 13, 1879-1892.	2.2	4
17	Supramolecular polymer assembly in aqueous solution arising from cyclodextrin host–guest complexation. Beilstein Journal of Organic Chemistry, 2016, 12, 50-72.	2.2	37
18	Photoâ€Reversible Supramolecular Hydrogels Assembled by α yclodextrin and Azobenzene Substituted Poly(acrylic acid)s: Effect of Substitution Degree, Concentration, and Tethered Chain Length. Macromolecular Materials and Engineering, 2016, 301, 191-198.	3.6	24

JIE WANG

#	Article	IF	CITATIONS
19	Synergetic catalytic effect of α-cyclodextrin on silver nanoparticles loaded in thermosensitive hydrogel. Colloid and Polymer Science, 2016, 294, 1087-1095.	2.1	13
20	The formation and catalytic activity of silver nanoparticles in aqueous polyacrylate solutions. Frontiers of Chemical Science and Engineering, 2016, 10, 432-439.	4.4	14
21	Block length determines the adsorption dynamics mode of triblock copolymers to a hydrophobic surface. Chemical Engineering Science, 2016, 142, 180-189.	3.8	7
22	Self-assembled micelles of N-phthaloylchitosan-g-poly (N-vinylcaprolactam) for temperature-triggered non-steroidal anti-inflammatory drug delivery. Journal of Materials Science, 2016, 51, 1591-1599.	3.7	9
23	Pod-Like Supramicelles with Multicompartment Hydrophobic Cores Prepared by Self-Assembly of Modified Chitosan. Nano-Micro Letters, 2016, 8, 151-156.	27.0	7
24	Tunable double-stranded inclusion complexes of γ-cyclodextrin threaded onto non-modified poly(ethylene glycol). Colloid and Polymer Science, 2016, 294, 311-319.	2.1	6
25	Biocompatible Nanoparticle Based on Dextran- <i>b</i> -Poly(<scp>l</scp> -lactide) Block Copolymer Formed by Flash Nanoprecipitation. Chemistry Letters, 2015, 44, 1688-1690.	1.3	13
26	Reversible photo-responsive vesicle based on the complexation between an azobenzene containing molecule and α-cyclodextrin. RSC Advances, 2015, 5, 32846-32852.	3.6	8
27	Bridged-cyclodextrin supramolecular hydrogels: host–guest interaction between a cyclodextrin dimer and adamantyl substituted poly(acrylate)s. RSC Advances, 2015, 5, 46067-46073.	3.6	15
28	Complexation of dodecyl-substituted poly(acrylate) by linked β-cyclodextrin dimers and trimers in aqueous solution. Journal of Polymer Science Part A, 2015, 53, 1278-1286.	2.3	5
29	Stable and efficient loading of silver nanoparticles in spherical polyelectrolyte brushes and the antibacterial effects. Colloids and Surfaces B: Biointerfaces, 2015, 127, 148-154.	5.0	15
30	A thermosensitive hydrogel carrier for nickel nanoparticles. Colloids and Interface Science Communications, 2015, 4, 1-4.	4.1	19
31	Effect of Comb-type Copolymers with Various Pendants on Flow Ability of Heavy Crude Oil. Industrial & Engineering Chemistry Research, 2015, 54, 5204-5212.	3.7	66
32	Facile Preparation of AIE-Active Fluorescent Nanoparticles through Flash Nanoprecipitation. Industrial & Engineering Chemistry Research, 2015, 54, 4683-4688.	3.7	59
33	β-Lactoglobulin (BLG) binding to highly charged cationic polymer-grafted magnetic nanoparticles: Effect of ionic strength. Journal of Colloid and Interface Science, 2015, 460, 221-229.	9.4	13
34	Heavy metal ions removal by nano-sized spherical polymer brushes. Chinese Journal of Polymer Science (English Edition), 2014, 32, 432-438.	3.8	10
35	Enhancement of Enzymatic Activity by Magnetic Spherical Polyelectrolyte Brushes: A Potential Recycling Strategy for Enzymes. Langmuir, 2014, 30, 11156-11164.	3.5	15
36	Host–guest chemistry of linked β-cyclodextrin trimers and adamantyl substituted poly(acrylate)s in aqueous solution. Polymer Chemistry, 2013, 4, 820-829.	3.9	15

JIE WANG

#	Article	IF	CITATIONS
37	Spherical particles of α-, β- and γ-cyclodextrin polymers and their capability for phenol removal. Materials Letters, 2012, 79, 156-158.	2.6	20
38	Aggregation of Hydrophobic Substituents of Poly(acrylate)s and Their Competitive Complexation by β- and γ-Cyclodextrins and Their Linked Dimers in Aqueous Solution. Industrial & Engineering Chemistry Research, 2011, 50, 7566-7571.	3.7	9
39	Preparation of Nickel Nanoparticles in Spherical Polyelectrolyte Brush Nanoreactor and Their Catalytic Activity. Industrial & Engineering Chemistry Research, 2011, 50, 13848-13853.	3.7	75
40	Aggregation and Host–Guest Interactions in Dansyl-Substituted Poly(acrylate)s in the Presence of β-Cyclodextrin and a β-Cyclodextrin Dimer in Aqueous Solution: A UV–Vis, Fluorescence, ¹ H NMR, and Rheological Study. Macromolecules, 2011, 44, 9782-9791.	4.8	20
41	Tunable polymeric hydrogels assembled by competitive complexation between cyclodextrin dimers and adamantyl substituted poly(acrylate)s. AICHE Journal, 2010, 56, 3021-3024.	3.6	12
42	Tailoring Polymeric Hydrogels through Cyclodextrin Host–Guest Complexation. Macromolecular Rapid Communications, 2010, 31, 300-304.	3.9	31
43	Steric effects and competitive intra―and intermolecular hostâ€guest complexation between betaâ€cyclodextrin and adamantyl substituted poly(acrylate)s in water: A ¹ H NMR, rheological and preparative study. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1818-1825.	2.1	8
44	Polymeric Networks Assembled by Adamantyl and β-Cyclodextrin Substituted Poly(acrylate)s: Hostâ°'Guest Interactions, and the Effects of Ionic Strength and Extent of Substitution. Industrial & Engineering Chemistry Research, 2010, 49, 609-612.	3.7	34
45	Rheology control by modulating hydrophobic and inclusive associations of sideâ€groups in poly (acrylic acid). Asia-Pacific Journal of Chemical Engineering, 2009, 4, 537-543.	1.5	7
46	Hydrogels assembled by inclusion complexation of poly(ethylene glycol) with alpha yclodextrin. Asia-Pacific Journal of Chemical Engineering, 2009, 4, 544-550.	1.5	14
47	Polymer Networks Assembled by Hostâ^Guest Inclusion between Adamantyl and β-Cyclodextrin Substituents on Poly(acrylic acid) in Aqueous Solution. Macromolecules, 2008, 41, 8677-8681.	4.8	79