Mehmet R Dokmeci

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8247255/mehmet-r-dokmeci-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

97	10,162	47	100
papers	citations	h-index	g-index
152	12,240 ext. citations	11.3	6.2
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
97	Lab-on-a-Contact Lens: Recent Advances and Future Opportunities in Diagnostics and Therapeutics <i>Advanced Materials</i> , 2022 , e2108389	24	8
96	Flexible patch with printable and antibacterial conductive hydrogel electrodes for accelerated wound healing <i>Biomaterials</i> , 2022 , 285, 121479	15.6	6
95	Co-Electrospun Silk Fibroin and Gelatin Methacryloyl Sheet Seeded with Mesenchymal Stem Cells for Tendon Regeneration <i>Small</i> , 2022 , e2107714	11	7
94	Engineering liver microtissues to study the fusion of HepG2 with mesenchymal stem cells and invasive potential of fused cells. <i>Biofabrication</i> , 2021 , 14,	10.5	1
93	Organ-on-a-Chip: A Heart-Breast Cancer-on-a-Chip Platform for Disease Modeling and Monitoring of Cardiotoxicity Induced by Cancer Chemotherapy (Small 15/2021). Small, 2021 , 17, 2170070	11	
92	A Heart-Breast Cancer-on-a-Chip Platform for Disease Modeling and Monitoring of Cardiotoxicity Induced by Cancer Chemotherapy. <i>Small</i> , 2021 , 17, e2004258	11	21
91	Healthy and diseased models of vascular systems. <i>Lab on A Chip</i> , 2021 , 21, 641-659	7.2	5
90	Cancer-on-a-Chip for Modeling Immune Checkpoint Inhibitor and Tumor Interactions. <i>Small</i> , 2021 , 17, e2004282	11	12
89	Biodegradable ECyclodextrin Conjugated Gelatin Methacryloyl Microneedle for Delivery of Water-Insoluble Drug. <i>Advanced Healthcare Materials</i> , 2020 , 9, e2000527	10.1	35
88	Angiogenesis: Mechanical Cues Regulating Proangiogenic Potential of Human Mesenchymal Stem Cells through YAP-Mediated Mechanosensing (Small 25/2020). <i>Small</i> , 2020 , 16, 2070142	11	
87	Hydrogel-Enabled Transfer Printing: Hydrogel-Enabled Transfer-Printing of Conducting Polymer Films for Soft Organic Bioelectronics (Adv. Funct. Mater. 6/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070038	15.6	1
86	Gelatin Methacryloyl Microneedle Patches for Minimally Invasive Extraction of Skin Interstitial Fluid. <i>Small</i> , 2020 , 16, e1905910	11	54
85	A Patch of Detachable Hybrid Microneedle Depot for Localized Delivery of Mesenchymal Stem Cells in Regeneration Therapy. <i>Advanced Functional Materials</i> , 2020 , 30, 2000086	15.6	38
84	Enhancement of label-free biosensing of cardiac troponin I. Proceedings of SPIE, 2020, 11251,	1.7	5
83	Rhodamine Conjugated Gelatin Methacryloyl Nanoparticles for Stable Cell Imaging <i>ACS Applied Bio Materials</i> , 2020 , 3, 6908-6918	4.1	5
82	Room-Temperature-Formed PEDOT:PSS Hydrogels Enable Injectable, Soft, and Healable Organic Bioelectronics. <i>Advanced Materials</i> , 2020 , 32, e1904752	24	97
81	Hydrogels: Room-Temperature-Formed PEDOT:PSS Hydrogels Enable Injectable, Soft, and Healable Organic Bioelectronics (Adv. Mater. 1/2020). <i>Advanced Materials</i> , 2020 , 32, 2070005	24	3

(2019-2020)

80	Non-transdermal microneedles for advanced drug delivery. <i>Advanced Drug Delivery Reviews</i> , 2020 , 165-166, 41-59	18.5	46
79	Hydrogel-Enabled Transfer-Printing of Conducting Polymer Films for Soft Organic Bioelectronics. <i>Advanced Functional Materials</i> , 2020 , 30, 1906016	15.6	32
78	Microengineered poly(HEMA) hydrogels for wearable contact lens biosensing. <i>Lab on A Chip</i> , 2020 , 20, 4205-4214	7.2	11
77	Micro and nanoscale technologies in oral drug delivery. Advanced Drug Delivery Reviews, 2020, 157, 37-	62 8.5	45
76	Wearable Tactile Sensors: Gelatin Methacryloyl-Based Tactile Sensors for Medical Wearables (Adv. Funct. Mater. 49/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070326	15.6	4
75	Biodegradable microneedle patch for transdermal gene delivery. <i>Nanoscale</i> , 2020 , 12, 16724-16729	7-7	18
74	Combined Effects of Electric Stimulation and Microgrooves in Cardiac Tissue-on-a-Chip for Drug Screening. <i>Small Methods</i> , 2020 , 4, 2000438	12.8	3
73	Gelatin methacryloyl-based tactile sensors for medical wearables. <i>Advanced Functional Materials</i> , 2020 , 30, 2003601	15.6	41
72	Microneedle Patches: Gelatin Methacryloyl Microneedle Patches for Minimally Invasive Extraction of Skin Interstitial Fluid (Small 16/2020). <i>Small</i> , 2020 , 16, 2070086	11	1
71	Biofabrication of endothelial cell, dermal fibroblast, and multilayered keratinocyte layers for skin tissue engineering. <i>Biofabrication</i> , 2020 ,	10.5	16
70	A Foreign Body Response-on-a-Chip Platform. Advanced Healthcare Materials, 2019, 8, e1801425	10.1	29
69	3D Bioprinting in Skeletal Muscle Tissue Engineering. <i>Small</i> , 2019 , 15, e1805530	11	113
68	High-Throughput Drug Screening: A Microfabricated Sandwiching Assay for Nanoliter and High-Throughput Biomarker Screening (Small 15/2019). <i>Small</i> , 2019 , 15, 1970078	11	1
67	In situ three-dimensional printing for reparative and regenerative therapy. <i>Biomedical Microdevices</i> , 2019 , 21, 42	3.7	41
66	The emergence of 3D bioprinting in organ-on-chip systems. <i>Progress in Biomedical Engineering</i> , 2019 , 1, 012001	7.2	47
65	Three-Dimensional Bioprinting of Functional Skeletal Muscle Tissue Using GelatinMethacryloyl-Alginate Bioinks. <i>Micromachines</i> , 2019 , 10,	3.3	48
64	Hall of Fame Article: Minimally Invasive and Regenerative Therapeutics (Adv. Mater. 1/2019). <i>Advanced Materials</i> , 2019 , 31, 1970005	24	1
63	Biodegradable Gelatin Methacryloyl Microneedles for Transdermal Drug Delivery. <i>Advanced Healthcare Materials</i> , 2019 , 8, e1801054	10.1	105

Organ-on-a-Chip for Cancer and Immune Organs Modeling. Advanced Healthcare Materials, 2019, 8, e18013.63 71

61	Engineering Precision Medicine. <i>Advanced Science</i> , 2019 , 6, 1801039	13.6	38
60	Bioinks for 3D bioprinting: an overview. <i>Biomaterials Science</i> , 2018 , 6, 915-946	7.4	488
59	Fabrication of whole-thermoplastic normally closed microvalve, micro check valve, and micropump. <i>Sensors and Actuators B: Chemical</i> , 2018 , 262, 625-636	8.5	35
58	Electrically Driven Microengineered Bioinspired Soft Robots. Advanced Materials, 2018, 30, 1704189	24	94
57	Three-Dimensional Bioprinting Strategies for Tissue Engineering. <i>Cold Spring Harbor Perspectives in Medicine</i> , 2018 , 8,	5.4	43
56	Protein/polysaccharide-based scaffolds mimicking native extracellular matrix for cardiac tissue engineering applications. <i>Journal of Biomedical Materials Research - Part A</i> , 2018 , 106, 769-781	5.4	45
55	Microfluidics-Enabled Multimaterial Maskless Stereolithographic Bioprinting. <i>Advanced Materials</i> , 2018 , 30, e1800242	24	190
54	Smart Bandages: Smart Bandage for Monitoring and Treatment of Chronic Wounds (Small 33/2018). <i>Small</i> , 2018 , 14, 1870150	11	2
53	Smart Bandage for Monitoring and Treatment of Chronic Wounds. <i>Small</i> , 2018 , 14, e1703509	11	142
52	Bioprinting: Microfluidics-Enabled Multimaterial Maskless Stereolithographic Bioprinting (Adv. Mater. 27/2018). <i>Advanced Materials</i> , 2018 , 30, 1870201	24	4
51	3D Bioprinting for Tissue and Organ Fabrication. <i>Annals of Biomedical Engineering</i> , 2017 , 45, 148-163	4.7	368
50	Bioprinting: Rapid Continuous Multimaterial Extrusion Bioprinting (Adv. Mater. 3/2017). <i>Advanced Materials</i> , 2017 , 29,	24	9
49	Biomechanical Strain Exacerbates Inflammation on a Progeria-on-a-Chip Model. <i>Small</i> , 2017 , 13, 16037	37 ₁ 1	48
48	Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E2293-E2302	11.5	416
47	Organ-On-A-Chip: Biomechanical Strain Exacerbates Inflammation on a Progeria-on-a-Chip Model (Small 15/2017). <i>Small</i> , 2017 , 13,	11	1
46	Controlling Incoming Macrophages to Implants: Responsiveness of Macrophages to Gelatin Micropatterns under M1/M2 Phenotype Defining Biochemical Stimulations. <i>Advanced Biology</i> , 2017 , 1, 1700041	3.5	7
45	Biosensors: Label-Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes (Adv. Sci. 5/2017). <i>Advanced Science</i> , 2017 , 4,	13.6	3

(2016-2017)

44	A Textile Dressing for Temporal and Dosage Controlled Drug Delivery. <i>Advanced Functional Materials</i> , 2017 , 27, 1702399	15.6	130
43	Biodegradable elastic nanofibrous platforms with integrated flexible heaters for on-demand drug delivery. <i>Scientific Reports</i> , 2017 , 7, 9220	4.9	67
42	Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. <i>Scientific Reports</i> , 2017 , 7, 8837	4.9	297
41	Integrin-Mediated Interactions Control Macrophage Polarization in 3D Hydrogels. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1700289	10.1	101
40	Rapid Continuous Multimaterial Extrusion Bioprinting. <i>Advanced Materials</i> , 2017 , 29, 1604630	24	205
39	Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering. <i>Advanced Healthcare Materials</i> , 2016 , 5, 108-18	10.1	407
38	Google Glass-Directed Monitoring and Control of Microfluidic Biosensors and Actuators. <i>Scientific Reports</i> , 2016 , 6, 22237	4.9	29
37	Aptamer-Based Microfluidic Electrochemical Biosensor for Monitoring Cell-Secreted Trace Cardiac Biomarkers. <i>Analytical Chemistry</i> , 2016 , 88, 10019-10027	7.8	137
36	Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications. <i>Scientific Reports</i> , 2016 , 6, 22691	4.9	39
35	Flexible pH-Sensing Hydrogel Fibers for Epidermal Applications. <i>Advanced Healthcare Materials</i> , 2016 , 5, 711-9	10.1	122
34	A liver-on-a-chip platform with bioprinted hepatic spheroids. <i>Biofabrication</i> , 2016 , 8, 014101	10.5	353
33	Nanotechnology in Textiles. ACS Nano, 2016, 10, 3042-68	16.7	390
32	Elastomeric free-form blood vessels for interconnecting organs on chip systems. <i>Lab on A Chip</i> , 2016 , 16, 1579-86	7.2	70
31	Reduced Graphene Oxide-GelMA Hybrid Hydrogels as Scaffolds for Cardiac Tissue Engineering. <i>Small</i> , 2016 , 12, 3677-89	11	283
30	Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink. <i>Advanced Materials</i> , 2016 , 28, 677-84	24	530
29	Advancing Tissue Engineering: A Tale of Nano-, Micro-, and Macroscale Integration. <i>Small</i> , 2016 , 12, 213	30 <u>⊦</u> 45	49
28	A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics. <i>Advanced Materials</i> , 2016 , 28, 3280-9	24	156
27	Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers. <i>Scientific Reports</i> , 2016 , 6, 24598	4.9	107

26	Platinum nanopetal-based potassium sensors for acute cell death monitoring. <i>RSC Advances</i> , 2016 , 6, 40517-40526	3.7	13
25	Hydrophobic Hydrogels: Toward Construction of Floating (Bio)microdevices. <i>Chemistry of Materials</i> , 2016 , 28, 3641-3648	9.6	34
24	Engineering Immunomodulatory Biomaterials To Tune the Inflammatory Response. <i>Trends in Biotechnology</i> , 2016 , 34, 470-482	15.1	268
23	Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. <i>Biomaterials</i> , 2016 , 110, 45-59	15.6	495
22	Bioprinted thrombosis-on-a-chip. <i>Lab on A Chip</i> , 2016 , 16, 4097-4105	7.2	146
21	Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. <i>Biomaterials</i> , 2016 , 106, 58-68	15.6	544
20	Dermal Patch with Integrated Flexible Heater for on Demand Drug Delivery. <i>Advanced Healthcare Materials</i> , 2016 , 5, 175-84	10.1	77
19	pH-Sensing Hydrogel Fibers: Flexible pH-Sensing Hydrogel Fibers for Epidermal Applications (Adv. Healthcare Mater. 6/2016). <i>Advanced Healthcare Materials</i> , 2016 , 5, 624-624	10.1	3
18	A cost-effective fluorescence mini-microscope for biomedical applications. <i>Lab on A Chip</i> , 2015 , 15, 366	1 7 92	68
17	From cardiac tissue engineering to heart-on-a-chip: beating challenges. <i>Biomedical Materials</i> (<i>Bristol</i>), 2015 , 10, 034006	3.5	96
16	Aligned carbon nanotube-based flexible gel substrates for engineering bio-hybrid tissue actuators. <i>Advanced Functional Materials</i> , 2015 , 25, 4486-4495	15.6	116
15	Smart flexible wound dressing with wireless drug delivery 2015 ,		7
14	Microfluidics for Advanced Drug Delivery Systems. Current Opinion in Chemical Engineering, 2015, 7, 101	-9.42	140
13	Antibody Derived Peptides for Detection of Ebola Virus Glycoprotein. <i>PLoS ONE</i> , 2015 , 10, e0135859	3.7	13
12	Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior. <i>Biosensors and Bioelectronics</i> , 2014 , 56, 359-67	11.8	82
11	Hydrogels for cardiac tissue engineering. NPG Asia Materials, 2014, 6, e99-e99	10.3	100
10	Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. <i>Biofabrication</i> , 2014 , 6, 024105	10.5	432
9	Organ-on-a-chip platforms for studying drug delivery systems. <i>Journal of Controlled Release</i> , 2014 , 190, 82-93	11.7	252

LIST OF PUBLICATIONS

8	Organs-on-a-chip: a new tool for drug discovery. Expert Opinion on Drug Discovery, 2014, 9, 335-52	6.2	158
7	Microfluidic techniques for development of 3D vascularized tissue. <i>Biomaterials</i> , 2014 , 35, 7308-25	15.6	215
6	Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs. <i>Biomaterials</i> , 2014 , 35, 7346-54	15.6	209
5	Wireless flexible smart bandage for continuous monitoring of wound oxygenation 2014,		6
4	Layer-by-layer assembly of 3D tissue constructs with functionalized graphene. <i>Advanced Functional Materials</i> , 2014 , 24, 6136-6144	15.6	131
3	All electronic approach for high-throughput cell trapping and lysis with electrical impedance monitoring. <i>Biosensors and Bioelectronics</i> , 2014 , 54, 462-7	11.8	27
2	Micro- and nanoengineering approaches to control stem cell-biomaterial interactions. <i>Journal of Functional Biomaterials</i> , 2011 , 2, 88-106	4.8	39