
Carla de Leitenburg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8247082/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Key Properties and Parameters of Pd/CeO ₂ Passive NO <i>_x</i> Adsorbers. Industrial & Engineering Chemistry Research, 2022, 61, 3329-3341.	1.8	3
2	Catalytic applications of cerium dioxide. , 2020, , 45-108.		11
3	The role of palladium salt precursors in Pd-PdO/CeO2 catalysts prepared by dry milling for methane oxidation. Catalysis Communications, 2020, 135, 105899.	1.6	16
4	Influence of Nanoscale Surface Arrangements on the Oxygen Transfer Ability of Ceria–Zirconia Mixed Oxide. Inorganics, 2020, 8, 34.	1.2	4
5	The effect of milling parameters on the mechanochemical synthesis of Pd–CeO ₂ methane oxidation catalysts. Catalysis Science and Technology, 2019, 9, 4232-4238.	2.1	33
6	High stability and activity of solution combustion synthesized Pd-based catalysts for methane combustion in presence of water. Applied Catalysis B: Environmental, 2018, 230, 237-245.	10.8	87
7	Outstanding Methane Oxidation Performance of Palladiumâ€Embedded Ceria Catalysts Prepared by a Oneâ€Step Dry Ballâ€Milling Method. Angewandte Chemie, 2018, 130, 10369-10373.	1.6	32
8	The Role of Neodymium in the Optimization of a Ni/CeO2 and Ni/CeZrO2 Methane Dry Reforming Catalyst. Inorganics, 2018, 6, 39.	1.2	14
9	Outstanding Methane Oxidation Performance of Palladiumâ€Embedded Ceria Catalysts Prepared by a Oneâ€Step Dry Ballâ€Milling Method. Angewandte Chemie - International Edition, 2018, 57, 10212-10216.	7.2	117
10	Ceria-Based Materials in Catalysis. Fundamental Theories of Physics, 2016, 50, 209-242.	0.1	37
11	Ceria–Zirconia Particles Wrapped in a 2D Carbon Envelope: Improved Lowâ€Temperature Oxygen Transfer and Oxidation Activity. Angewandte Chemie - International Edition, 2015, 54, 14040-14043.	7.2	49
12	Sintering behaviour of olivine–ceria blends. Ceramics International, 2015, 41, 6293-6298.	2.3	6
13	Room temperature oxidation of formaldehyde on Pt-based catalysts: A comparison between ceria and other supports (TiO2, Al2O3 and ZrO2). Catalysis Today, 2015, 253, 163-171.	2.2	71
14	High energy ball milling of titania and titania–ceria powder mixtures. Powder Technology, 2014, 254, 591-596.	2.1	28
15	The formation of nanodomains of Ce6O11 in ceria catalyzed soot combustion. Journal of Catalysis, 2014, 312, 191-194.	3.1	45
16	Shape-Dependent Activity of Ceria in Soot Combustion. ACS Catalysis, 2014, 4, 172-181.	5.5	377
17	CERIA-BASED FORMULATIONS FOR CATALYSTS FOR DIESEL SOOT COMBUSTION. Catalytic Science Series, 2013, , 565-621.	0.6	9
18	Higher activity of Diesel soot oxidation over polycrystalline ceria and ceria–zirconia solid solutions from more reactive surface planes. Catalysis Today, 2012, 197, 119-126	2.2	76

CARLA DE LEITENBURG

#	Article	IF	CITATIONS
19	Effect of process modification and presence of H2O2 in the synthesis of samaria-doped ceria powders for fuel cell applications. International Journal of Hydrogen Energy, 2012, 37, 1698-1709.	3.8	11
20	Catalytic Performance of Solution Combustion Synthesized Alumina- and Ceria-Supported Pt and Pd Nanoparticles for the Combustion of Propane and Dimethyl Ether (DME). Industrial & Engineering Chemistry Research, 2012, 51, 7510-7517.	1.8	31
21	On the role of lattice/surface oxygen in ceria–zirconia catalysts for diesel soot combustion. Catalysis Today, 2012, 181, 108-115.	2.2	158
22	Room and high temperature wear behaviour of Ni matrix micro- and nano-SiC composite electrodeposits. Surface and Coatings Technology, 2012, 206, 3658-3665.	2.2	43
23	Study on Redox, Structural and Electrical Properties of Ce[sub x]Zr[sub 1â^x]O[sub 2] for Applications in SOFC Anodes. Journal of the Electrochemical Society, 2011, 158, P22.	1.3	16
24	Study on Structural and Electrical Properties of Ce _{0.5} Zr _{0.5} O ₂ for Applications in SOFC Anode. ECS Transactions, 2010, 25, 335-344.	0.3	2
25	Activity, durability and microstructural characterization of ex-nitrate and ex-chloride Pt/Ce0.56Zr0.44O2 catalysts for low temperature water gas shift reaction. Journal of Catalysis, 2010, 270, 285-298.	3.1	36
26	Ethanol steam reforming and water gas shift over Co/ZnO catalytic honeycombs doped with Fe, Ni, Cu, Cr and Na. International Journal of Hydrogen Energy, 2010, 35, 7690-7698.	3.8	103
27	Redox behavior of gold supported on ceria and ceria-zirconia based catalysts. Journal of Rare Earths, 2009, 27, 196-203.	2.5	22
28	Ethanol steam reforming and water gas shift reaction over Co–Mn/ZnO catalysts. Chemical Engineering Journal, 2009, 154, 267-273.	6.6	43
29	A comparative study of water gas shift reaction over gold and platinum supported on ZrO2 and CeO2–ZrO2. Applied Catalysis B: Environmental, 2009, 88, 272-282.	10.8	57
30	Soot combustion over silver-supported catalysts. Applied Catalysis B: Environmental, 2009, 91, 489-498.	10.8	161
31	Diesel soot combustion activity of ceria promoted with alkali metals. Catalysis Today, 2008, 136, 3-10.	2.2	120
32	Catalytic monoliths for ethanol steam reforming. Catalysis Today, 2008, 138, 187-192.	2.2	69
33	Promotion effect of surface Lanthanum in soot oxidation over ceria-based catalysts. Topics in Catalysis, 2007, 42-43, 319-322.	1.3	22
34	Insights into the redox properties of ceria-based oxides and their implications in catalysis. Journal of Alloys and Compounds, 2006, 408-412, 1096-1102.	2.8	364
35	COD and AOX abatement in catalytic wet oxidation of halogenated liquid wastes using CeO2-based catalysts. Journal of Alloys and Compounds, 2006, 408-412, 1136-1140.	2.8	18
36	Insights into the dynamics of oxygen storage/release phenomena in model ceria–zirconia catalysts as inferred from transient studies using H2, CO and soot as reductants. Catalysis Today, 2006, 112, 94-98.	2.2	41

CARLA DE LEITENBURG

#	Article	IF	CITATIONS
37	Promotional effect of rare earths and transition metals in the combustion of diesel soot over CeO2 and CeO2–ZrO2. Catalysis Today, 2006, 114, 40-47.	2.2	295
38	The role of rare earth oxides as promoters and stabilizers in combustion catalysts. Journal of Alloys and Compounds, 2004, 374, 387-392.	2.8	77
39	The use of temperature-programmed and dynamic/transient methods in catalysis: characterization of ceria-based, model three-way catalysts. Catalysis Today, 2003, 77, 407-417.	2.2	210
40	Reduction and Oxygen Storage Behavior of Noble Metals Supported on Silica-Doped Ceria. Journal of Catalysis, 2002, 211, 407-421.	3.1	43
41	Some recent developments in the characterization of ceria-based catalysts. Journal of Alloys and Compounds, 2001, 323-324, 584-591.	2.8	186
42	Some Insight into the Effects of Oxygen Diffusion in the Reduction Kinetics of Ceria. Industrial & Engineering Chemistry Research, 2001, 40, 4828-4835.	1.8	26
43	Oxygen Storage Behavior of Ceria–Zirconia-Based Catalysts in the Presence of SO2. Topics in Catalysis, 2001, 16/17, 299-306.	1.3	30
44	Effect of sulfur on the oxygen storage/release capacity of Rh/CeO2. Studies in Surface Science and Catalysis, 2000, 130, 1349-1354.	1.5	0
45	The Dynamics of Oxygen Storage in Ceria–Zirconia Model Catalysts Measured by CO Oxidation under Stationary and Cycling Feedstream Compositions. Journal of Catalysis, 2000, 193, 338-347.	3.1	152
46	A Model for the Temperature-Programmed Reduction of Low and High Surface Area Ceria. Journal of Catalysis, 2000, 193, 273-282.	3.1	288
47	Catalytic combustion of hydrocarbons with Mn and Cu-doped ceria–zirconia solid solutions. Catalysis Today, 1999, 47, 133-140.	2.2	186
48	The utilization of ceria in industrial catalysis. Catalysis Today, 1999, 50, 353-367.	2.2	854
49	Structural and Oxygen Storage/Release Properties of CeO2-Based Solid Solutions. Comments on Inorganic Chemistry, 1999, 20, 263-284.	3.0	194
50	The Synthesis and Characterization of Mesoporous High-Surface Area Ceria Prepared Using a Hybrid Organic/Inorganic Route. Journal of Catalysis, 1998, 178, 299-308.	3.1	227
51	The preparation of high surface area CeO2–ZrO2 mixed oxides by a surfactant-assisted approach. Catalysis Today, 1998, 43, 79-88.	2.2	202
52	Fast oxygen uptake/release over a new CeOx phase. Chemical Communications, 1998, , 1897-1898.	2.2	23
53	Reactivity and Characterization of Pd-containing Ceria-Zirconia Catalysts for Methane Combustion. Studies in Surface Science and Catalysis, 1998, 119, 87-92.	1.5	24
54	Unusual Oxygen Storage/Redox Behavior of High-Surface-Area Ceria Prepared by a Surfactant-Assisted Route. Chemistry of Materials, 1997, 9, 2676-2678.	3.2	96

CARLA DE LEITENBURG

#	Article	IF	CITATIONS
55	A Temperature-Programmed and Transient Kinetic Study of CO2Activation and Methanation over CeO2Supported Noble Metals. Journal of Catalysis, 1997, 166, 98-107.	3.1	225
56	Nanophase Fluorite-Structured CeO2–ZrO2Catalysts Prepared by High-Energy Mechanical Milling. Journal of Catalysis, 1997, 169, 490-502.	3.1	374
57	The direct room-temperature synthesis of CeO2-based solid solutions: a novel route to catalysts with a high oxygen storage/transport capacity. Studies in Surface Science and Catalysis, 1996, 101, 1283-1292.	1.5	48
58	High-Energy Mechanical Synthesis of Nanophase Fluorite-Structured Mixed Oxide Catalysts with a High Redox Activity. Materials Research Society Symposia Proceedings, 1996, 454, 247.	0.1	0
59	Wet oxidation of acetic acid catalyzed by doped ceria. Applied Catalysis B: Environmental, 1996, 11, L29-L35.	10.8	66
60	The effect of doping CeO2 with zirconium in the oxidation of isobutane. Applied Catalysis A: General, 1996, 139, 161-173.	2.2	155
61	CO2 Methanation Under Transient and Steady-State Conditions over Rh/CeO2 and CeO2-Promoted Rh/SiO2: The Role of Surface and Bulk Ceria. Journal of Catalysis, 1995, 151, 111-124.	3.1	199
62	Metal-Support Interactions in Rh/CeO2, Rh/TiO2, and Rh/Nb2O5 Catalysts as Inferred from CO2 Methanation Activity. Journal of Catalysis, 1995, 156, 171-174.	3.1	96
63	CeO2-based solid solutions with the fluorite structure as novel and effective catalysts for methane combustion. Journal of the Chemical Society Chemical Communications, 1995, , 965.	2.0	117
64	A novel and simple route to catalysts with a high oxygen storage capacity: the direct room-temperature synthesis of CeO2–ZrO2solid solutions. Journal of the Chemical Society Chemical Communications, 1995, , 2181-2182.	2.0	93
65	NO reduction by CO over Rh/Al2O3. Effects of rhodium dispersion on the catalytic properties. Journal of Catalysis, 1994, 146, 136-143.	3.1	66
66	Rh–CeO2interaction induced by high-temperature reduction. Characterization and catalytic behaviour in transient and continuous conditions. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 1311-1319.	1.7	168
67	CO and CO2hydrogenation under transient conditions over Rh–CeO2: novel positive effects of metal–support interaction on catalytic activity and selectivity. Journal of the Chemical Society Chemical Communications, 1991, .	2.0	20