
Douglas C Morton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8246886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 2010, 10, 11707-11735.	4.9	2,326
2	Global fire emissions estimates during 1997–2016. Earth System Science Data, 2017, 9, 697-720.	9.9	1,159
3	Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14637-14641.	7.1	780
4	A human-driven decline in global burned area. Science, 2017, 356, 1356-1362.	12.6	694
5	Global burned area and biomass burning emissions from small fires. Journal of Geophysical Research, 2012, 117, .	3.3	578
6	Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6347-6352.	7.1	576
7	Brazil's Soy Moratorium. Science, 2015, 347, 377-378.	12.6	452
8	Climate regulation of fire emissions and deforestation in equatorial Asia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20350-20355.	7.1	336
9	NASA Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager. Remote Sensing, 2013, 5, 4045-4066.	4.0	278
10	Beyond 3-D: The new spectrum of lidar applications for earth and ecological sciences. Remote Sensing of Environment, 2016, 186, 372-392.	11.0	229
11	The Global Fire Atlas of individual fire size, duration, speed and direction. Earth System Science Data, 2019, 11, 529-552.	9.9	227
12	Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proceedings of the United States of America, 2018, 115, 121-126.	7.1	218
13	Forecasting Fire Season Severity in South America Using Sea Surface Temperature Anomalies. Science, 2011, 334, 787-791.	12.6	197
14	Agricultural intensification increases deforestation fire activity in Amazonia. Global Change Biology, 2008, 14, 2262-2275.	9.5	180
15	Understorey fire frequency and the fate of burned forests in southern Amazonia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120163.	4.0	152
16	Tree height and tropical forest biomass estimation. Biogeosciences, 2013, 10, 8385-8399.	3.3	149
17	The gathering firestorm in southern Amazonia. Science Advances, 2020, 6, eaay1632.	10.3	132
18	A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nature Climate Change, 2017, 7, 906-911.	18.8	115

DOUGLAS C MORTON

#	Article	IF	CITATIONS
19	Validation of MODIS Active Fire Detection Products Derived from Two Algorithms. Earth Interactions, 2005, 9, 1-25.	1.5	112
20	Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon. Global Biogeochemical Cycles, 2016, 30, 1639-1660.	4.9	109
21	Mapping canopy damage from understory fires in Amazon forests using annual time series of Landsat and MODIS data. Remote Sensing of Environment, 2011, 115, 1706-1720.	11.0	96
22	Quantifying long-term changes in carbon stocks and forest structure from Amazon forest degradation. Environmental Research Letters, 2018, 13, 065013.	5.2	75
23	How much global burned area can be forecast on seasonal time scales using sea surface temperatures?. Environmental Research Letters, 2016, 11, 045001.	5.2	72
24	Synergy between land use and climate change increases future fire risk in Amazon forests. Earth System Dynamics, 2017, 8, 1237-1246.	7.1	71
25	The role of fire in global forest loss dynamics. Global Change Biology, 2021, 27, 2377-2391.	9.5	71
26	El Niño drought increased canopy turnover in Amazon forests. New Phytologist, 2018, 219, 959-971.	7.3	65
27	Characterizing Vegetation Fire Dynamics in Brazil through Multisatellite Data: Common Trends and Practical Issues. Earth Interactions, 2005, 9, 1-26.	1.5	62
28	Structural Dynamics of Tropical Moist Forest Gaps. PLoS ONE, 2015, 10, e0132144.	2.5	57
29	The Impact of Land Cover Change on Surface Energy and Water Balance in Mato Grosso, Brazil. Earth Interactions, 2006, 10, 1-17.	1.5	54
30	Impacts of Degradation on Water, Energy, and Carbon Cycling of the Amazon Tropical Forests. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005677.	3.0	44
31	Deforestation-induced climate change reduces carbon storage in remaining tropical forests. Nature Communications, 2022, 13, 1964.	12.8	41
32	Thinner bark increases sensitivity of wetter Amazonian tropical forests to fire. Ecology Letters, 2020, 23, 99-106.	6.4	40
33	Fireâ€related carbon emissions from land use transitions in southern Amazonia. Geophysical Research Letters, 2008, 35, .	4.0	39
34	Separating the influence of temperature, drought, and fire on interannual variability in atmospheric CO ₂ . Global Biogeochemical Cycles, 2014, 28, 1295-1310.	4.9	33
35	Amazon forest structure generates diurnal and seasonal variability in light utilization. Biogeosciences, 2016, 13, 2195-2206.	3.3	32
36	Long-Term Impacts of Selective Logging on Amazon Forest Dynamics from Multi-Temporal Airborne LiDAR. Remote Sensing, 2019, 11, 709.	4.0	31

#	Article	IF	CITATIONS
37	Managing fire risk during drought: the influence of certification and El Niñ0 on fire-driven forest conversion for oil palm in Southeast Asia. Earth System Dynamics, 2017, 8, 749-771.	7.1	21
38	uncertainties. Carbon Balance and Management, 2011, 6, 18.	3.2	19
39	Management and climate contributions to satelliteâ€derived active fire trends in the contiguous United States. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 645-660.	3.0	13
40	Forecasting Global Fire Emissions on Subseasonal to Seasonal (S2S) Time Scales. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001955.	3.8	13
41	Tracking the Rates and Mechanisms of Canopy Damage and Recovery Following Hurricane Maria Using Multitemporal Lidar Data. Ecosystems, 2022, 25, 892-910.	3.4	10
42	Estimation of coarse dead wood stocks in intact and degraded forests in the Brazilian Amazon using airborne lidar. Biogeosciences, 2019, 16, 3457-3474.	3.3	8
43	Largeâ€scale, imageâ€based tree species mapping in a tropical forest using artificial perceptual learning. Methods in Ecology and Evolution, 2021, 12, 608-618.	5.2	8