Véronique Lefebvre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8246745/publications.pdf

Version: 2024-02-01

55 papers

4,277 citations

147801 31 h-index 53 g-index

55 all docs

55 docs citations

55 times ranked 6082 citing authors

#	Article	IF	CITATIONS
1	The transcription factor Sox4 is required for thymic tuft cell development. International Immunology, 2022, 34, 45-52.	4.0	7
2	SoxD genes are required for adult neural stem cell activation. Cell Reports, 2022, 38, 110313.	6.4	16
3	Consolidation of the clinical and genetic definition of a <i>SOX4-</i> related neurodevelopmental syndrome. Journal of Medical Genetics, 2022, 59, 1058-1068.	3.2	10
4	Single-cell analysis identifies the interaction of altered renal tubules with basophils orchestrating kidney fibrosis. Nature Immunology, 2022, 23, 947-959.	14.5	37
5	Single-cell atlas of craniogenesis uncovers SOXC-dependent, highly proliferative, and myofibroblast-like osteodermal progenitors. Cell Reports, 2022, 40, 111045.	6.4	2
6	Sox12 enhances Fbw7-mediated ubiquitination and degradation of GATA3 in Th2 cells. Cellular and Molecular Immunology, 2021, 18, 1729-1738.	10.5	16
7	Isolation of Mouse Growth and for Primary Cultures. Methods in Molecular Biology, 2021, 2245, 39-51.	0.9	6
8	SOX9 keeps growth plates and articular cartilage healthy by inhibiting chondrocyte dedifferentiation/osteoblastic redifferentiation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	96
9	Epithelial SOX11 regulates eyelid closure during embryonic eye development. Biochemical and Biophysical Research Communications, 2021, 549, 27-33.	2.1	O
10	Human Adult Fibroblastâ€ike Synoviocytes and Articular Chondrocytes Exhibit Prominent Overlap in Their Transcriptomic Signatures. ACR Open Rheumatology, 2021, 3, 359-370.	2.1	2
11	Preparation of Adult Mouse Skeletal Tissue Sections for RNA In Situ Hybridization. Methods in Molecular Biology, 2021, 2245, 85-92.	0.9	5
12	EdU-Based Assay of Cell Proliferation and Stem Cell Quiescence in Skeletal Tissue Sections. Methods in Molecular Biology, 2021, 2230, 357-365.	0.9	3
13	Widening of the genetic and clinical spectrum of Lamb–Shaffer syndrome, a neurodevelopmental disorder due to SOX5 haploinsufficiency. Genetics in Medicine, 2020, 22, 524-537.	2.4	21
14	Sox9 deletion causes severe intervertebral disc degeneration characterized by apoptosis, matrix remodeling, and compartment-specific transcriptomic changes. Matrix Biology, 2020, 94, 110-133.	3.6	66
15	Serum NT/CT SIRT1 ratio reflects early osteoarthritis and chondrosenescence. Annals of the Rheumatic Diseases, 2020, 79, 1370-1380.	0.9	42
16	Enhanced Chondrogenic Capacity of Mesenchymal Stem Cells After TNFα Pre-treatment. Frontiers in Bioengineering and Biotechnology, 2020, 8, 658.	4.1	10
17	De Novo SOX6 Variants Cause a Neurodevelopmental Syndrome Associated with ADHD, Craniosynostosis, and Osteochondromas. American Journal of Human Genetics, 2020, 106, 830-845.	6.2	17
18	SOX9 in cartilage development and disease. Current Opinion in Cell Biology, 2019, 61, 39-47.	5.4	155

#	Article	IF	CITATIONS
19	SOXopathies: Growing Family of Developmental Disorders Due to SOX Mutations. Trends in Genetics, 2019, 35, 658-671.	6.7	43
20	SOX11 and SOX4 drive the reactivation of an embryonic gene program during murine wound repair. Nature Communications, 2019, 10, 4042.	12.8	58
21	The SOXE transcription factors—SOX8, SOX9Âand SOX10—share a bi-partite transactivation mechanism. Nucleic Acids Research, 2019, 47, 6917-6931.	14.5	41
22	Roles and regulation of SOX transcription factors in skeletogenesis. Current Topics in Developmental Biology, 2019, 133, 171-193.	2.2	74
23	De Novo SOX4 Variants Cause a Neurodevelopmental Disease Associated with Mild Dysmorphism. American Journal of Human Genetics, 2019, 104, 246-259.	6.2	40
24	Sox 11 gene disruption causes congenital anomalies of the kidney and urinary tract (CAKUT). Kidney International, $2018, 93, 1142-1153$.	5.2	19
25	PRC2 Is Dispensable (i) in Vivo (i) for \hat{l}^2 -Catenin-Mediated Repression of Chondrogenesis in the Mouse Embryonic Cranial Mesenchyme. G3: Genes, Genomes, Genetics, 2018, 8, 491-503.	1.8	15
26	Sox12 promotes T reg differentiation in the periphery during colitis. Journal of Experimental Medicine, 2018, 215, 2509-2519.	8.5	7
27	SOX9 is dispensable for the initiation of epigenetic remodeling and the activation of marker genes at the onset of chondrogenesis. Development (Cambridge), 2018, 145, .	2.5	59
28	Cancer-predicting transcriptomic and epigenetic signatures revealed for ulcerative colitis in patient-derived epithelial organoids. Oncotarget, 2018, 9, 28717-28730.	1.8	28
29	SOX9 and the many facets of its regulation in the chondrocyte lineage. Connective Tissue Research, 2017, 58, 2-14.	2.3	250
30	Editorial for the special issue on Cartilage Biology and Pathology. Seminars in Cell and Developmental Biology, 2017, 62, 1-2.	5.0	0
31	SoxC Transcription Factors Promote Contralateral Retinal Ganglion Cell Differentiation and Axon Guidance in the Mouse Visual System. Neuron, 2017, 93, 1110-1125.e5.	8.1	64
32	SOX5/6/21 Prevent Oncogene-Driven Transformation of Brain Stem Cells. Cancer Research, 2017, 77, 4985-4997.	0.9	29
33	Transcriptional control of chondrocyte specification and differentiation. Seminars in Cell and Developmental Biology, 2017, 62, 34-49.	5.0	142
34	Elevated Fibroblast Growth Factor Signaling Is Critical for the Pathogenesis of the Dwarfism in Evc2/Limbin Mutant Mice. PLoS Genetics, 2016, 12, e1006510.	3.5	18
35	SOXC Genes and the Control of Skeletogenesis. Current Osteoporosis Reports, 2016, 14, 32-38.	3.6	25
36	SOX4 Is Essential for Prostate Tumorigenesis Initiated by PTEN Ablation. Cancer Research, 2016, 76, 1112-1121.	0.9	67

#	Article	IF	Citations
37	SOXC Transcription Factors Induce Cartilage Growth Plate Formation in Mouse Embryos by Promoting Noncanonical WNT Signaling. Journal of Bone and Mineral Research, 2015, 30, 1560-1571.	2.8	34
38	The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis. Nucleic Acids Research, 2015, 43, 8183-8203.	14.5	219
39	Musculoskeletal integration at the wrist underlies modular development of limb tendons. Development (Cambridge), 2015, 142, 2431-41.	2.5	79
40	The SOX9 upstream region prone to chromosomal aberrations causing campomelic dysplasia contains multiple cartilage enhancers. Nucleic Acids Research, 2015, 43, 5394-5408.	14.5	54
41	Progenitor cell fate, SOXC and WNT. Oncotarget, 2015, 6, 24596-24597.	1.8	6
42	SOXC proteins amplify canonical WNT signaling to secure nonchondrocytic fates in skeletogenesis. Journal of Cell Biology, 2014, 207, 657-671.	5.2	65
43	Proliferation Assays (BrdU and EdU) on Skeletal Tissue Sections. Methods in Molecular Biology, 2014, 1130, 233-243.	0.9	60
44	SoxC Transcription Factors Are Required for Neuronal Differentiation in Adult Hippocampal Neurogenesis. Journal of Neuroscience, 2012, 32, 3067-3080.	3.6	140
45	Sox9 Directs Hypertrophic Maturation and Blocks Osteoblast Differentiation of Growth Plate Chondrocytes. Developmental Cell, 2012, 22, 597-609.	7.0	334
46	Sequential requirement of Sox4 and Sox11 during development of the sympathetic nervous system. Development (Cambridge), 2010, 137, 775-784.	2.5	105
47	Organogenesis relies on SoxC transcription factors for the survival of neural and mesenchymal progenitors. Nature Communications, $2010, 1, 9$.	12.8	183
48	The SoxD transcription factors – Sox5, Sox6, and Sox13 – are key cell fate modulators. International Journal of Biochemistry and Cell Biology, 2010, 42, 429-432.	2.8	130
49	The Cell-Intrinsic Requirement of Sox6 for Cortical Interneuron Development. Neuron, 2009, 63, 466-481.	8.1	194
50	Generation of mice harboring a <i>Sox5</i> conditional null allele. Genesis, 2008, 46, 294-299.	1.6	27
51	The three SoxC proteinsâ€"Sox4, Sox11 and Sox12â€"exhibit overlapping expression patterns and molecular properties. Nucleic Acids Research, 2008, 36, 3101-3117.	14.5	202
52	SoxD Proteins Influence Multiple Stages of Oligodendrocyte Development and Modulate SoxE Protein Function. Developmental Cell, 2006, 11, 697-709.	7.0	229
53	Generation of mice harboring aSox6 conditional null allele. Genesis, 2006, 44, 219-224.	1.6	35
54	The Transcription Factors L-Sox5 and Sox6 Are Essential for Cartilage Formation. Developmental Cell, 2001, 1, 277-290.	7.0	548

#	Article	IF	CITATIONS
55	Characterization of primary cultures of chondrocytes from type II collagen/l²-galactosidase transgenic mice. Matrix Biology, 1994, 14, 329-335.	3.6	143