William M Palin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8246709/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photobiomodulation in Acute Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Journal of Neurotrauma, 2023, 40, 210-227.	1.7	10
2	Electrophoretic deposition of novel semi-permeable coatings on 3D-printed Ti-Nb alloy meshes for guided alveolar bone regeneration. Dental Materials, 2022, 38, 431-443.	1.6	18
3	Photobiomodulation reduces hippocampal apoptotic cell death and produces a Raman spectroscopic "signature― PLoS ONE, 2022, 17, e0264533.	1.1	6
4	On the inaccuracies of dental radiometers. PLoS ONE, 2021, 16, e0245830.	1.1	10
5	Potential for direct application of blue light for photo-disinfection of dentine. Journal of Photochemistry and Photobiology B: Biology, 2021, 215, 112123.	1.7	5
6	Light and viscosity effects on the curing potential of bulk-fill composites placed in deep cavities. Odontology / the Society of the Nippon Dental University, 2021, 109, 874-883.	0.9	6
7	â€ ⁻ Let there be Light,' and there was Light, but was it Enough? A Review of Modern Dental Light Curing. Dental Update, 2021, 48, 633-640.	0.1	7
8	Photo-polymerisation variables influence the structure and subsequent thermal response of dental resin matrices. Dental Materials, 2020, 36, 343-352.	1.6	9
9	Bis(4-methyl phenyl)iodonium as an alternative component to diphenyliodonium in camphorquinone-based ternary initiating systems. Dental Materials, 2020, 36, 1282-1288.	1.6	7
10	Chemistry of novel and contemporary resin-based dental adhesives. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103875.	1.5	47
11	Structural Evidence That the Polymerization Rate Dictates Order and Intrinsic Strain Generation in Photocured Methacrylate Biomedical Polymers. Macromolecules, 2019, 52, 5377-5388.	2.2	12
12	Differential responses of myoblasts and myotubes to photobiomodulation are associated with mitochondrial number. Journal of Biophotonics, 2019, 12, e201800411.	1.1	17
13	Increased rates of photopolymerisation by ternary type II photoinitiator systems in dental resins. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 98, 71-78.	1.5	39
14	Under the spotlight: mechanisms of photobiomodulation concentrating on blue and green light. Photochemical and Photobiological Sciences, 2019, 18, 1877-1909.	1.6	76
15	Shining a light on high volume photocurable materials. Dental Materials, 2018, 34, 695-710.	1.6	70
16	Composition of Dental Resin-Based Composites for Direct Restorations. , 2018, , 11-24.		4
17	Developing a More Appropriate Classification System for Modern Resin-Based Composite Technologies. , 2018, , 89-96.		2
18	The impact of endodontic access on the biaxial flexure strength of dentineâ€bonded crown substrates – an <i>inÂvitro</i> study. International Endodontic Journal, 2017, 50, 184-193.	2.3	2

WILLIAM M PALIN

#	Article	IF	CITATIONS
19	Development and application of LED arrays for use in phototherapy research. Journal of Biophotonics, 2017, 10, 1514-1525.	1.1	27
20	Five Year Clinical Evaluation of Restorations Placed in a Low Shrinkage Stress Composite in UK General Dental Practices. European journal of prosthodontics and restorative dentistry, The, 2017, 25, 108-114.	0.3	2
21	The mechanical behavior of the material-tissue and material-material interface in dental reconstructions. International Journal of Adhesion and Adhesives, 2016, 69, 2-14.	1.4	8
22	Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties. Dental Materials, 2016, 32, 1586-1599.	1.6	161
23	Special Issue on "Biological and materials associated interfacial adhesion in modern dentistryâ€. International Journal of Adhesion and Adhesives, 2016, 69, 1.	1.4	О
24	Photopolymerization of highly filled dimethacrylate-based composites using Type I or Type II photoinitiators and varying co-monomer ratios. Dental Materials, 2016, 32, 136-148.	1.6	27
25	Bacterial adhesion mechanisms on dental implant surfaces and the influencing factors. International Journal of Adhesion and Adhesives, 2016, 69, 58-71.	1.4	87
26	The dark art of light measurement: accurate radiometry for low-level light therapy. Lasers in Medical Science, 2016, 31, 789-809.	1.0	69
27	Biomodulatory effects of laser irradiation on dental pulp cellsinvitro. , 2015, , .		3
28	The effect of UV-Vis to near-infrared light on the biological response of human dental pulp cells. , 2015, , .		2
29	Beam profile measurements for dental phototherapy: the effect of distance, wavelength and tissue thickness. , 2015, , .		1
30	The Effect of UDMA/TEGDMA Mixtures and Bioglass Incorporation on the Mechanical and Physical Properties of Resin and Resin-Based Composite Materials. Conference Papers in Science, 2014, 2014, 1-5.	0.3	7
31	Ultra-fast light-curing resin composite with increased conversion and reduced monomer elution. Dental Materials, 2014, 30, 594-604.	1.6	69
32	Reduced polymerization stress of MAPO-containing resin composites with increased curing speed, degree of conversion and mechanical properties. Dental Materials, 2014, 30, 507-516.	1.6	50
33	Contemporary Issues in Light Curing. Operative Dentistry, 2014, 39, 4-14.	0.6	70
34	An audit of cavity and crown preparations and two direct restorations carried out by foundation dentists in the Oxford and Wessex Deaneries. British Dental Journal, 2014, 216, 421-425.	0.3	2
35	The effect of ultra-fast photopolymerisation of experimental composites on shrinkage stress, network formation and pulpal temperature rise. Dental Materials, 2014, 30, 1280-1289.	1.6	54
36	Biaxial flexure strength determination of endodontically accessed ceramic restorations. Dental Materials, 2014, 30, 902-909.	1.6	11

WILLIAM M PALIN

#	Article	IF	CITATIONS
37	Experimental and FE displacement and polymerization stress of bonded restorations as a function of the C-Factor, volume and substrate stiffness. Journal of Dentistry, 2014, 42, 140-148.	1.7	25
38	Developments in low level light therapy (LLLT) for dentistry. Dental Materials, 2014, 30, 465-475.	1.6	182
39	Physico-mechanical characteristics of commercially available bulk-fill composites. Journal of Dentistry, 2014, 42, 993-1000.	1.7	311
40	Low level light therapy (LLLT) for the treatment and management of dental and oral diseases. Dental Update, 2014, 41, 763-772.	0.1	6
41	Effects of particulate filler systems on the properties and performance of dental polymer composites. , 2013, , 294-335.		8
42	The influence of irradiation potential on the degree of conversion and mechanical properties of two bulk-fill flowable RBC base materials. Dental Materials, 2013, 29, 906-912.	1.6	109
43	Progress in dimethacrylate-based dental composite technology and curing efficiency. Dental Materials, 2013, 29, 139-156.	1.6	401
44	The Effect of Bioglass Addition on Mechanical and Physical Properties of Photoactive UDMA-TEGDMA Resin Composites. Key Engineering Materials, 2013, 587, 215-221.	0.4	1
45	Effects of Red Light-emitting Diode Irradiation on Dental Pulp Cells. Journal of Dental Research, 2012, 91, 961-966.	2.5	54
46	Improved bonding of zirconia substructures to resin using a "glaze-on―technique. Journal of Dentistry, 2012, 40, 347-351.	1.7	59
47	Competitive light absorbers in photoactive dental resin-based materials. Dental Materials, 2012, 28, 831-841.	1.6	44
48	Specimen aspect ratio and light transmission in photoactive dental resins. Dental Materials, 2012, 28, 1154-1161.	1.6	13
49	Photoinitiator type and applicability of exposure reciprocity law in filled and unfilled photoactive resins. Dental Materials, 2011, 27, 157-164.	1.6	147
50	Two year clinical evaluation of a low-shrink resin composite material in UK general dental practices. Dental Materials, 2011, 27, 622-630.	1.6	54
51	Dynamic monitoring of curing photoactive resins: A methods comparison. Dental Materials, 2010, 26, 565-570.	1.6	15
52	Dynamic monitoring of refractive index change through photoactive resins. Dental Materials, 2010, 26, 1106-1112.	1.6	37
53	Investigating filler morphology and mechanical properties of new low-shrinkage resin composite types. Journal of Oral Rehabilitation, 2010, 37, 364-376.	1.3	128
54	Irradiation Modes' Impact on Radical Entrapment in Photoactive Resins. Journal of Dental Research, 2010, 89, 1494-1498.	2.5	46

WILLIAM M PALIN

#	Article	IF	CITATIONS
55	Extrinsic energy sources affect hardness through depth during set of a glass-ionomer cement. Journal of Dentistry, 2010, 38, 490-495.	1.7	35
56	The mechanical properties of nanofilled resin-based composites: Characterizing discrete filler particles and agglomerates using a micromanipulation technique. Dental Materials, 2009, 25, 180-187.	1.6	67
57	The mechanical properties of nanofilled resin-based composites: The impact of dry and wet cyclic pre-loading on bi-axial flexure strength. Dental Materials, 2009, 25, 188-197.	1.6	123
58	Oxygen inhibition and incremental layer bond strengths of resin composites. Dental Materials, 2009, 25, 1338-1346.	1.6	108
59	Cure width potential for MOD resin composite molar restorations. Dental Materials, 2008, 24, 1083-1094.	1.6	48
60	Water uptake and strength characteristics of a nanofilled resin-based composite. Journal of Dentistry, 2008, 36, 186-193.	1.7	147
61	Refractive Index Mismatch and Monomer Reactivity Influence Composite Curing Depth. Journal of Dental Research, 2008, 87, 84-88.	2.5	257
62	The Effect of Surface Preparation and Luting Agent on Bond Strength to a Zirconium-based Ceramic. Operative Dentistry, 2007, 32, 623-630.	0.6	53
63	Cuspal movement and microleakage in premolar teeth restored with resin-based filling materials cured using a †soft-start' polymerisation protocol. Dental Materials, 2007, 23, 637-643.	1.6	51
64	Photoinitiation chemistry affects light transmission and degree of conversion of curing experimental dental resin composites. Dental Materials, 2007, 23, 807-813.	1.6	91
65	In vitro cuspal deflection and microleakage of maxillary premolars restored with novel low-shrink dental composites. Dental Materials, 2005, 21, 324-335.	1.6	190
66	The influence of short and medium-term water immersion on the hydrolytic stability of novel low-shrink dental composites. Dental Materials, 2005, 21, 852-863.	1.6	155
67	The reliability of standardized flexure strength testing procedures for a light-activated resin-based composite. Dental Materials, 2005, 21, 911-919.	1.6	54
68	The frictional coefficients and associated wear resistance of novel low-shrink resin-based composites. Dental Materials, 2005, 21, 1111-1118.	1.6	16
69	An evaluation of the mechanical properties of â€ ⁻ hydrothermal' dental glass after water immersion and surface polishing. Dental Materials, 2003, 19, 92-100.	1.6	7
70	Monomer conversion versus flexure strength of a novel dental composite. Journal of Dentistry, 2003, 31, 341-351.	1.7	56
71	The reliability in flexural strength testing of a novel dental composite. Journal of Dentistry, 2003, 31, 549-557.	1.7	54
72	The effect of surface roughness on the flexure strength of an alumina reinforced all-ceramic crown material. Journal of Dentistry, 2002, 30, 153-160.	1.7	35

#	Article	IF	CITATIONS
73	An evaluation of the technique sensitivity of a hydrothermal low-fusing dental ceramic. Journal of Dentistry, 2001, 29, 443-449.	1.7	14