
Karen Skriver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8246536/publications.pdf Version: 2024-02-01

KADEN SKDIVED

#	Article	IF	CITATIONS
1	NAC transcription factors: structurally distinct, functionally diverse. Trends in Plant Science, 2005, 10, 79-87.	4.3	1,214
2	Gene expression in response to abscisic acid and osmotic stress Plant Cell, 1990, 2, 503-512.	3.1	903
3	Analysis and prediction of leucine-rich nuclear export signals. Protein Engineering, Design and Selection, 2004, 17, 527-536.	1.0	721
4	Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Reports, 2004, 5, 297-303.	2.0	388
5	The <i>Arabidopsis thaliana</i> NAC transcription factor family: structure–function relationships and determinants of ANAC019 stress signalling. Biochemical Journal, 2010, 426, 183-196.	1.7	354
6	Human C.hivin.1 inhibitor: primary structure, cDNA cloning, and chromosomal localization. Biochemistry, 1986, 25, 4292-4301.	1.2	338
7	cis-acting DNA elements responsive to gibberellin and its antagonist abscisic acid Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 7266-7270.	3.3	287
8	Structure, Function and Networks of Transcription Factors Involved in Abiotic Stress Responses. International Journal of Molecular Sciences, 2013, 14, 5842-5878.	1.8	278
9	NESbase version 1.0: a database of nuclear export signals. Nucleic Acids Research, 2003, 31, 393-396.	6.5	195
10	ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene <i>NCED3</i> in <i>Arabidopsis thaliana</i> . FEBS Open Bio, 2013, 3, 321-327.	1.0	182
11	DNA-binding specificity and molecular functions of NAC transcription factors. Plant Science, 2005, 169, 785-797.	1.7	171
12	The barley 60 kDa jasmonate-induced protein (JIP60) is a novel ribosome-inactivating protein. Plant Journal, 1994, 6, 815-824.	2.8	142
13	Biochemical function of typical and variant <i>Arabidopsis thaliana</i> U-box E3 ubiquitin-protein ligases. Biochemical Journal, 2008, 413, 447-457.	1.7	131
14	Interactions by Disorder – A Matter of Context. Frontiers in Molecular Biosciences, 2020, 7, 110.	1.6	124
15	NAC Transcription Factors in Senescence: From Molecular Structure to Function in Crops. Plants, 2015, 4, 412-448.	1.6	108
16	Eukaryotic transcription factors: paradigms of protein intrinsic disorder. Biochemical Journal, 2017, 474, 2509-2532.	1.7	108
17	Ligand mimicry? Plant-parasitic nematode polypeptide with similarity to CLAVATA3. Trends in Plant Science, 2003, 8, 55-57.	4.3	100
18	Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins: RING-H2 molecular specificity and cellular localization. Biochemical Journal, 2003, 371, 97-108.	1.7	97

KAREN SKRIVER

#	Article	IF	CITATIONS
19	Novel Plant Ca2+-binding Protein Expressed in Response to Abscisic Acid and Osmotic Stress. Journal of Biological Chemistry, 1996, 271, 343-348.	1.6	95
20	Structure and Biochemical Function of a Prototypical Arabidopsis U-box Domain. Journal of Biological Chemistry, 2004, 279, 40053-40061.	1.6	85
21	Senescence-associated Barley NAC (NAM, ATAF1,2, CUC) Transcription Factor Interacts with Radical-induced Cell Death 1 through a Disordered Regulatory Domain. Journal of Biological Chemistry, 2011, 286, 35418-35429.	1.6	84
22	A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in <i>Arabidopsis thaliana</i> . Nucleic Acids Research, 2014, 42, 7681-7693.	6.5	84
23	DNA binding by the plant-specific NAC transcription factors in crystal and solution: a firm link to WRKY and GCM transcription factors. Biochemical Journal, 2012, 444, 395-404.	1.7	77
24	NAC transcription factor gene regulatory and protein–protein interaction networks in plant stress responses and senescence. IUBMB Life, 2014, 66, 156-166.	1.5	77
25	Heterologous expression and characterization of wild-type and mutant forms of a 26ÂkDa endochitinase from barley (Hordeum vulgare L.). Biochemical Journal, 1997, 322, 815-822.	1.7	71
26	HRT, a Novel Zinc Finger, Transcriptional Repressor from Barley. Journal of Biological Chemistry, 1998, 273, 23313-23320.	1.6	69
27	Order by disorder in plant signaling. Trends in Plant Science, 2012, 17, 625-632.	4.3	65
28	Structure and expression of the barley lipid transfer protein gene Ltp1. Plant Molecular Biology, 1992, 18, 585-589.	2.0	64
29	A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis. Planta, 2011, 234, 123-137.	1.6	62
30	Peptomics, identification of novel cationic Arabidopsis peptides with conserved sequence motifs. In Silico Biology, 2002, 2, 441-51.	0.4	62
31	Investigating the effect of teaching as a generative learning strategy when learning through desktop and immersive VR: A media and methods experiment. British Journal of Educational Technology, 2020, 51, 2115-2138.	3.9	59
32	Structures and Short Linear Motif of Disordered Transcription Factor Regions Provide Clues to the Interactome of the Cellular Hub Protein Radical-induced Cell Death1. Journal of Biological Chemistry, 2017, 292, 512-527.	1.6	55
33	FYVE zinc-finger proteins in the plant model Arabidopsis thaliana: identification of PtdIns3P-binding residues by comparison of classic and variant FYVE domains. Biochemical Journal, 2001, 359, 165-173.	1.7	48
34	Protein intrinsic disorder in <i>Arabidopsis</i> NAC transcription factors: transcriptional activation by ANAC013 and ANAC046 and their interactions with RCD1. Biochemical Journal, 2015, 465, 281-294.	1.7	48
35	Identification of an enhancer/silencer sequence directing the aleurone-specific expression of a barley chitinase gene. Plant Journal, 1994, 6, 579-589.	2.8	44
36	Membrane Association of the <i>Arabidopsis</i> ARF Exchange Factor GNOM Involves Interaction of Conserved Domains. Plant Cell, 2008, 20, 142-151.	3.1	41

KAREN SKRIVER

#	Article	lF	CITATIONS
37	Widespread occurrence of a highly conserved RING-H2 zinc finger motif in the model plant Arabidopsis thaliana. FEBS Letters, 1998, 436, 283-287.	1.3	38
38	NAC genes. Plant Signaling and Behavior, 2010, 5, 907-910.	1.2	36
39	Promiscuous and specific phospholipid binding by domains in ZAC, a membrane-associated Arabidopsis protein with an ARF GAP zinc finger and a C2 domain. Plant Molecular Biology, 2000, 44, 799-814.	2.0	35
40	FYVE zinc-finger proteins in the plant model Arabidopsis thaliana: identification of PtdIns3P-binding residues by comparison of classic and variant FYVE domains. Biochemical Journal, 2001, 359, 165.	1.7	34
41	Barley plants over-expressing the NAC transcription factor gene <i>HvNAC005</i> show stunting and delay in development combined with early senescence. Journal of Experimental Botany, 2016, 67, 5259-5273.	2.4	30
42	Preliminary crystallographic analysis of the NAC domain of ANAC, a member of the plant-specific NAC transcription factor family. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 112-115.	2.5	28
43	Structure of Radical-Induced Cell Death1 Hub Domain Reveals a Common αα-Scaffold for Disorder in Transcriptional Networks. Structure, 2018, 26, 734-746.e7.	1.6	28
44	A single class of ARF GTPase activated by several pathway-specific ARF-GEFs regulates essential membrane traffic in Arabidopsis. PLoS Genetics, 2018, 14, e1007795.	1.5	28
45	Introduction of a tryptophan side chain into subsite +1 enhances transglycosylation activity of a GH-18 chitinase from Arabidopsis thaliana, AtChiC. Glycobiology, 2013, 23, 81-90.	1.3	22
46	Quantification of Conformational Entropy Unravels Effect of Disordered Flanking Region in Coupled Folding and Binding. Journal of the American Chemical Society, 2021, 143, 14540-14550.	6.6	22
47	Evolutionary conservation of the intrinsic disorder-based Radical-Induced Cell Death1 hub interactome. Scientific Reports, 2019, 9, 18927.	1.6	19
48	Flanking Disorder of the Folded αα-Hub Domain from Radical Induced Cell Death1 Affects Transcription Factor Binding by Ensemble Redistribution. Journal of Molecular Biology, 2021, 433, 167320.	2.0	17
49	αα-Hub domains and intrinsically disordered proteins: A decisive combo. Journal of Biological Chemistry, 2021, 296, 100226.	1.6	16
50	Insight into Calcium-Binding Motifs of Intrinsically Disordered Proteins. Biomolecules, 2021, 11, 1173.	1.8	16
51	A flexible loop controlling the enzymatic activity and specificity in a glycosyl hydrolase family 19 endochitinase from barley seeds (Hordeum vulgare L.). Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1159-1167.	1.1	14
52	Intrinsic Disorder in Plant Transcription Factor Systems: Functional Implications. International Journal of Molecular Sciences, 2020, 21, 9755.	1.8	14
53	The Arabidopsis ADP-ribosylation factor (ARF) and ARF-like (ARL) system and its regulation by BIG2, a large ARF–GEF. Plant Science, 2006, 171, 707-717.	1.7	13
54	NAC Transcription Factors: From Structure to Function in Stress-Associated Networks. , 2016, , 199-212.		13

KAREN SKRIVER

#	Article	IF	CITATIONS
55	Germin like protein genes exhibit modular expression during salt and drought stress in elite rice cultivars. Molecular Biology Reports, 2022, 49, 293-302.	1.0	13
56	26kDa endochitinase from barley seeds: Real-time monitoring of the enzymatic reaction and substrate binding experiments using electrospray ionization mass spectrometry. Journal of Biotechnology, 2009, 143, 274-283.	1.9	12
57	Subgroup-specific intrinsic disorder profiles of arabidopsis NAC transcription factors: Identification of functional hotspots. Plant Signaling and Behavior, 2015, 10, e1010967.	1.2	12
58	26 kDa Endochitinase from Barley Seeds: An Interaction of the Ionizable Side Chains Essential for Catalysis. Journal of Biochemistry, 2005, 138, 553-562.	0.9	10
59	Involvement of WRKY, MYB and DOF DNA-binding proteins in interaction with a rice germin-like protein gene promoter. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	10
60	Chitinase-catalyzed hydrolysis of 4-nitrophenyl penta-N-acetyl-Î ² -chitopentaoside as determined by real-time ESIMS: The 4-nitrophenyl moiety of the substrate interacts with the enzyme binding site. Carbohydrate Research, 2011, 346, 863-866.	1.1	9
61	Connecting the αα-hubs: same fold, disordered ligands, new functions. Cell Communication and Signaling, 2021, 19, 2.	2.7	9
62	A 3-dimensional evaluation of the macular region: comparing digitized and film-based media with a clinical evaluation. Acta Ophthalmologica, 2006, 84, 296-300.	0.4	5
63	αα-hub coregulator structure and flexibility determine transcription factor binding and selection in regulatory interactomes. Journal of Biological Chemistry, 2022, 298, 101963.	1.6	5
64	Disorder in a two-domain neuronal Ca2+-binding protein regulates domain stability and dynamics using ligand mimicry. Cellular and Molecular Life Sciences, 2021, 78, 2263-2278.	2.4	4
65	Structure of the replication regulator Sap1 reveals functionally important interfaces. Scientific Reports, 2018, 8, 10930.	1.6	3
66	Effects of Flanking Disorder on the Behaviour of Ordered Domains. Biophysical Journal, 2017, 112, 58a.	0.2	0
67	Insight into calcium-binding motifs of intrinsically disordered proteins. Biophysical Journal, 2022, 121, 300a.	0.2	0