
Michael G Hughes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8246497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Field investigation of sediment transport in the swash zone. Continental Shelf Research, 1998, 18, 1179-1199.	1.8	190
2	National-scale wave energy resource assessment for Australia. Renewable Energy, 2010, 35, 1783-1791.	8.9	178
3	Flow velocity and sediment transport in the swash zone of a steep beach. Marine Geology, 1997, 138, 91-103.	2.1	132

4 SEDIMENTOLOGY AND STRATIGRAPHY OF A TIDE-DOMINATED, FORELAND-BASIN DELTA (FLY RIVER, PAPUA) TJ ETQq0 0 0 rgBT/Overlog

5	Settling velocity of sediments at high concentrations. Coastal Engineering, 2004, 51, 91-100.	4.0	118
6	Suspended sediment transport in the swash zone of a dissipative beach. Marine Geology, 2005, 216, 169-189.	2.1	108
7	Sediment transport in distributary channels and its export to the pro-deltaic environment in a tidally dominated delta: Fly River, Papua New Guinea. Continental Shelf Research, 2004, 24, 2431-2454.	1.8	88
8	Sediment suspension and turbulence in the swash zone of dissipative beaches. Marine Geology, 2006, 228, 117-135.	2.1	86
9	Sediment transport on dissipative, intermediate and reflective beaches. Earth-Science Reviews, 2013, 124, 32-50.	9.1	81
10	Beach face and berm morphodynamics fronting a coastal lagoon. Geomorphology, 2006, 82, 331-346.	2.6	80
11	Coastal Wetland Mapping Using Ensemble Learning Algorithms: A Comparative Study of Bagging, Boosting and Stacking Techniques. Remote Sensing, 2020, 12, 1683.	4.0	72
12	Swash overtopping and sediment overwash on a truncated beach. Coastal Engineering, 2005, 52, 633-645.	4.0	68
13	Breaker turbulence and sediment suspension in the surf zone. Marine Geology, 2010, 271, 250-259.	2.1	61
14	Eulerian flow velocities in the swash zone: Field data and model predictions. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	60
15	Quantifying wave exposure in shallow temperate reef systems: applicability of fetch models for predicting algal biodiversity. Marine Ecology - Progress Series, 2010, 417, 83-95.	1.9	59
16	Field observations of instantaneous water slopes and horizontal pressure gradients in the swash-zone. Continental Shelf Research, 2006, 26, 574-588.	1.8	58
17	Spectral signatures for swash on reflective, intermediate and dissipative beaches. Marine Geology, 2014, 355, 88-97.	2.1	57
18	Hydrodynamics and Sediment Fluxes across an Onshore Migrating Intertidal Bar. Journal of Coastal Research, 2006, 222, 247-259.	0.3	53

MICHAEL G HUGHES

#	Article	IF	CITATIONS
19	Hydraulic Sorting of Heavy-Mineral Grains by Swash on a Medium-Sand Beach. Journal of Sedimentary Research, 2000, 70, 994-1004.	1.6	52
20	Hydrokinematic regions within the swash zone. Continental Shelf Research, 2007, 27, 2000-2013.	1.8	51
21	Morphodynamic evolution of a coastal lagoon entrance during swash overwash. Geomorphology, 2008, 95, 398-411.	2.6	49
22	Sediment transport processes and morphodynamics on a reflective beach under storm and non-storm conditions. Marine Geology, 2012, 326-328, 154-165.	2.1	44
23	An Introduction to Coastal Processes and Geomorphology. , 0, , .		42
24	Tidally incised valleys on tropical carbonate shelves: An example from the northern Great Barrier Reef, Australia. Marine Geology, 2005, 220, 181-204.	2.1	38
25	Nearshore wave height variation in unsaturated surf. Journal of Geophysical Research, 2010, 115, .	3.3	38
26	Dynamics of the turbidity maximum zone in a microâ€ŧidal estuary: Hawkesbury River, Australia. Sedimentology, 1998, 45, 397-410.	3.1	32
27	Suspended Sediment in the Swash Zone: Heuristic Analysis of Spatial and Temporal Variations in Concentration. Journal of Coastal Research, 2007, 236, 1345-1354.	0.3	31
28	Predicted benthic disturbance regimes on the Australian continental shelf: a modelling approach. Marine Ecology - Progress Series, 2012, 449, 13-25.	1.9	30
29	Imbricate and fitted fabrics in coastal boulder deposits on the Australian east coast. Geology, 1989, 17, 544.	4.4	28
30	Probability distributions for wave runup on beaches. Coastal Engineering, 2010, 57, 575-584.	4.0	28
31	Introduction to Coastal Processes and Geomorphology. , 0, , .		28
32	The morphology of barchan-shaped sand banks from western Torres Strait, northern Australia. Sedimentary Geology, 2007, 202, 638-652.	2.1	26
33	Estuarine shoreline processes in a dynamic low-energy system. Ocean Dynamics, 2010, 60, 285-298.	2.2	25
34	Berm formation and dynamics on a gently sloping beach; the effect of water level and swash overtopping. Earth Surface Processes and Landforms, 2009, 34, 1533-1546.	2.5	22
35	Equilibrium shoreface profiles: A sediment transport approach. Marine Geology, 2017, 390, 321-330.	2.1	20
36	Field observations of nearshore bar formation. Earth Surface Processes and Landforms, 2008, 33, 1021-1032.	2.5	19

MICHAEL G HUGHES

#	Article	IF	CITATIONS
37	Observations of offshore bar decay: Sediment budgets and the role of lower shoreface processes. Continental Shelf Research, 2010, 30, 1497-1510.	1.8	19
38	The potential impact of bedform migration on seagrass communities in Torres Strait, northern Australia. Continental Shelf Research, 2008, 28, 2188-2202.	1.8	16
39	Saline wetland extents and tidal inundation regimes on a micro-tidal coast, New South Wales, Australia. Estuarine, Coastal and Shelf Science, 2019, 227, 106297.	2.1	16
40	Selective Entrainment of Sediment Graded by Size and Density Under Waves. Journal of Sedimentary Research, 2003, 73, 906-911.	1.6	15
41	Biogeography of the Lord Howe Rise region, Tasman Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 959-969.	1.4	14
42	Inundation characteristics of mangrove and saltmarsh in micro-tidal estuaries. Estuarine, Coastal and Shelf Science, 2021, 261, 107553.	2.1	14
43	Field Observations of Turbulence, Sand Suspension, and Crossâ€Shore Transport Under Spilling and Plunging Breakers. Journal of Geophysical Research F: Earth Surface, 2018, 123, 2844-2862.	2.8	13
44	Form drag is a major component of bed shear stress associated with tidal flow in the vicinity of an isolated sand bank, Torres Strait, northern Australia. Continental Shelf Research, 2008, 28, 2203-2213.	1.8	11
45	A novel method for tracking individual waves in the surf zone. Coastal Engineering, 2015, 98, 26-30.	4.0	10
46	Mapping Wetland Types in Semiarid Floodplains: A Statistical Learning Approach. Remote Sensing, 2019, 11, 609.	4.0	9
47	Rip Currents: Observations of Hydraulic Gradients, Friction Factors and Wave Pump Efficiency. , 2001, , 483.		7
48	Wave Height Distributions in the Surf Zone on Natural Beaches. Journal of Coastal Research, 2016, 75, 917-921.	0.3	7
49	An Eco-Morphodynamic Modelling Approach to Estuarine Hydrodynamics & Wetlands in Response to Sea-Level Rise. Frontiers in Marine Science, 2022, 9, .	2.5	7
50	Field Observations of Instantaneous Cross-Shore Free Surface Profiles and Flow Depths in the Swash Zone. , 2006, , 1.		6
51	Shoreline Implications of Flood-Tide Delta Morphodynamics: The Case of Port Stephens (SE Australia). , 2007, , 1417.		6
52	Building a national wetland inventory: a review and roadmap to move forward. Wetlands Ecology and Management, 2018, 26, 805-827.	1.5	6
53	Wave Period and Grain Size Controls on Shortâ€Wave Suspended Sediment Transport Under Shoaling and Breaking Waves. Journal of Geophysical Research F: Earth Surface, 2019, 124, 3124-3142.	2.8	6

54 Sediment Transport Numerical Modelling in the Swash Zone. , 2006, , 1.

MICHAEL G HUGHES

#	Article	IF	CITATIONS
55	Surf Zone Turbulence and Suspended Sediment Dynamics—A Review. Journal of Marine Science and Engineering, 2021, 9, 1300.	2.6	5
56	Coastal Wetland Responses to Sea Level Rise: The Losers and Winners Based on Hydro-Geomorphological Settings. Remote Sensing, 2022, 14, 1888.	4.0	5
57	Random Forest Classification Method for Predicting Intertidal Wetland Migration Under Sea Level Rise. Frontiers in Environmental Science, 0, 10, .	3.3	5
58	Swash saturation: an assessment of available models. Ocean Dynamics, 2018, 68, 911-922.	2.2	4
59	Measurement of Groundwater and Swash Interactions on a Sandy Beach. , 2006, , 1.		3
60	Sediment flux in a rip channel on a barred intermediate beach under low wave energy. , 2009, , .		3
61	Intertidal wetland geomorphology influences main channel hydrodynamics in a mature barrier estuary. Estuarine, Coastal and Shelf Science, 2022, 267, 107783.	2.1	3
62	A HYBRID MODEL OF SWASH-ZONE LONGSHORE SEDIMENT TRANSPORT ON REFLECTIVE BEACHES. Coastal Engineering Proceedings, 2011, , 29.	0.1	2
63	The swash zone. , 2020, , 155-186.		1
64	Field measurements of shear stress and friction in the surf zone. Earth Surface Processes and Landforms, 2021, 46, 385-398.	2.5	1
65	Berm Development and Lagoon Closure on a Gently Sloping Beach. , 2006, , 1.		0