Gil Ju Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8246465/publications.pdf

Version: 2024-02-01

Cululer

#	Article	IF	CITATIONS
1	Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nature Communications, 2017, 8, 1664.	12.8	381
2	Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nature Communications, 2020, 11, 5934.	12.8	182
3	Bioinspired Artificial Eyes: Optic Components, Digital Cameras, and Visual Prostheses. Advanced Functional Materials, 2018, 28, 1705202.	14.9	174
4	Wearable Force Touch Sensor Array Using a Flexible and Transparent Electrode. Advanced Functional Materials, 2017, 27, 1605286.	14.9	151
5	Colored, Daytime Radiative Coolers with Thinâ€Film Resonators for Aesthetic Purposes. Advanced Optical Materials, 2018, 6, 1800707.	7.3	116
6	A <i>Janus</i> emitter for passive heat release from enclosures. Science Advances, 2020, 6, .	10.3	116
7	An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array. Nature Electronics, 2020, 3, 546-553.	26.0	100
8	Efficient Light Absorption by GaN Truncated Nanocones for High Performance Water Splitting Applications. ACS Applied Materials & Interfaces, 2018, 10, 28672-28678.	8.0	57
9	Bioâ€Inspired Artificial Vision and Neuromorphic Image Processing Devices. Advanced Materials Technologies, 2022, 7, 2100144.	5.8	53
10	Outdoorâ€Useable, Wireless/Batteryâ€Free Patchâ€Type Tissue Oximeter with Radiative Cooling. Advanced Science, 2021, 8, 2004885.	11.2	50
11	Localized Delivery of Theranostic Nanoparticles and Highâ€Energy Photons using Microneedlesâ€onâ€Bioelectronics. Advanced Materials, 2021, 33, e2100425.	21.0	43
12	Plasmonic Silver Nanoparticle-Impregnated Nanocomposite BiVO ₄ Photoanode for Plasmon-Enhanced Photocatalytic Water Splitting. Journal of Physical Chemistry C, 2018, 122, 7088-7093.	3.1	42
13	Ultra-thin films with highly absorbent porous media fine-tunable for coloration and enhanced color purity. Nanoscale, 2017, 9, 2986-2991.	5.6	41
14	Revisiting silk: a lens-free optical physical unclonable function. Nature Communications, 2022, 13, 247.	12.8	41
15	An amphibious artificial vision system with a panoramic visual field. Nature Electronics, 2022, 5, 452-459.	26.0	40
16	High-performance, color-tunable fiber shaped organic light-emitting diodes. Nanoscale, 2018, 10, 16184-16192.	5.6	33
17	Large area fabrication of engineered microlens array with low sag height for light-field imaging. Optics Express, 2019, 27, 4435.	3.4	30
18	Miniaturized 3D Depth Sensing-Based Smartphone Light Field Camera. Sensors, 2020, 20, 2129.	3.8	25

Gil Ju Lee

#	Article	IF	CITATIONS
19	Instant, multiscale dry transfer printing by atomic diffusion control at heterogeneous interfaces. Science Advances, 2021, 7, .	10.3	22
20	Robustness of an artificially tailored fisheye imaging system with a curvilinear image surface. Optics and Laser Technology, 2017, 96, 50-57.	4.6	21
21	Reflective color filter with precise control of the color coordinate achieved by stacking silicon nanowire arrays onto ultrathin optical coatings. Scientific Reports, 2019, 9, 3350.	3.3	19
22	Determining the Effectiveness of Radiative Coolerâ€Integrated Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	19
23	Enlarged Color Gamut Representation Enabled by Transferable Silicon Nanowire Arrays on Metal–Insulator–Metal Films. ACS Applied Materials & Interfaces, 2019, 11, 11849-11856.	8.0	18
24	Spectrally and Spatially Selective Emitters Using Polymer Hybrid Spoof Plasmonics. ACS Applied Materials & Interfaces, 2020, 12, 53206-53214.	8.0	18
25	Selfâ€Cooling Galliumâ€Based Transformative Electronics with a Radiative Cooler for Reliable Stiffness Tuning in Outdoor Use. Advanced Science, 2022, 9, .	11.2	17
26	Superâ€Antireflective Structure Films with Precisely Controlled Refractive Index Profile. Advanced Optical Materials, 2017, 5, 1600616.	7.3	16
27	Recent advances in imaging systems and photonic nanostructures inspired by insect eye geometry. Applied Spectroscopy Reviews, 2018, 53, 112-128.	6.7	16
28	Heat-shedding with photonic structures: radiative cooling and its potential. Journal of Materials Chemistry C, 2022, 10, 9915-9937.	5.5	15
29	Parametric Optimization of Lateral NIPIN Phototransistors for Flexible Image Sensors. Sensors, 2017, 17, 1774.	3.8	14
30	Double-Sided Anti-Reflection Nanostructures on Optical Convex Lenses for Imaging Applications. Coatings, 2019, 9, 404.	2.6	14
31	Recent Advances in Vertically Aligned Nanowires for Photonics Applications. Micromachines, 2020, 11, 726.	2.9	14
32	NFC-Based Wearable Optoelectronics Working with Smartphone Application for Untact Healthcare. Sensors, 2021, 21, 878.	3.8	13
33	Gires–Tournois Immunoassay Platform for Labelâ€Free Brightâ€Field Imaging and Facile Quantification of Bioparticles. Advanced Materials, 2022, 34, e2110003.	21.0	12
34	Mapping the structural, electrical, and optical properties of hydrothermally grown phosphorus-doped ZnO nanorods for optoelectronic device applications. Nanoscale Research Letters, 2019, 14, 110.	5.7	11
35	Design and Fabrication of Microscale, Thin-Film Silicon Solid Immersion Lenses for Mid-Infrared Application. Micromachines, 2020, 11, 250.	2.9	11
36	Thermostat property of Janus emitter in enclosures. Solar Energy Materials and Solar Cells, 2021, 230, 111173.	6.2	11

Gil Ju Lee

#	Article	IF	CITATIONS
37	Ultra-thin and near-unity selective emitter for efficient cooling. Optics Express, 2021, 29, 31364.	3.4	10
38	Optical Design of Porous ZnO/TiO ₂ Films for Highly Transparent Glasses with Broadband Ultraviolet Protection. Journal of Nanomaterials, 2017, 2017, 1-8.	2.7	9
39	Selective and Sensitive Photon Sieve Based on Ill–V Semiconductor Nanowire Forest Fabricated by Lithographyâ€Free Process. Advanced Optical Materials, 2020, 8, 2000198.	7.3	9
40	Colored, Covert Infrared Display through Hybrid Planarâ€Plasmonic Cavities. Advanced Optical Materials, 2021, 9, 2100429.	7.3	9
41	Artificial Eyes: Bioinspired Artificial Eyes: Optic Components, Digital Cameras, and Visual Prostheses (Adv. Funct. Mater. 24/2018). Advanced Functional Materials, 2018, 28, 1870168.	14.9	8
42	Singleâ€Material, Nearâ€Infrared Selective Absorber Based on Refractive Indexâ€Tunable Tamm Plasmon Structure. Advanced Optical Materials, 2022, 10, 2102388.	7.3	7
43	Spatially-Segmented Colored Radiative Cooler With Angle-Robustness. IEEE Photonics Journal, 2022, 14, 1-6.	2.0	7
44	Theoretical analysis and experiment of subwavelength structure-integrated red AlGaInP light-emitting diodes for uniform field distribution and enhanced light extraction efficiency. AlP Advances, 2016, 6, 035104.	1.3	5
45	Multilayer selective passive daytime radiative cooler optimization utilizing memetic algorithm. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 272, 107774.	2.3	5
46	The Facile Implementation of Soft/Tunable Multiband Optical Filters by Stacking Vertical Silicon Nanowire Arrays for Smart Sensing. Advanced Intelligent Systems, 2019, 1, 1900072.	6.1	4
47	Determining the Effectiveness of Radiative Coolerâ€Integrated Solar Cells (Adv. Energy Mater. 10/2022). Advanced Energy Materials, 2022, 12, .	19.5	2
48	Parametric Studies on Artificial <i>Morpho</i> Butterfly Wing Scales for Optical Device Applications. Journal of Nanomaterials, 2015, 2015, 1-7.	2.7	1
49	Colored, Covert Infrared Display through Hybrid Planarâ€Plasmonic Cavities (Advanced Optical) Tj ETQq1 1 0.78	34314 rgB⊺ 7.3	「/Qverlock 1
50	Flexible forms of moth eye structures and their applications. , 2015, , .		0
51	Fabrication of Ultra-thin Color Films with Highly Absorbing Media Using Oblique Angle Deposition. Journal of Visualized Experiments, 2017, , .	0.3	0
52	Fabrication of Flexible Image Sensor Based on Lateral NIPIN Phototransistors. Journal of Visualized Experiments, 2018, , .	0.3	0
53	Reflective Color Filters with Enlarged Color Gamut Enabled by Stacking Silicon Nanowires on Thin-film Coatings. , 2019, , .		0
54	Photon Sieving: Selective and Sensitive Photon Sieve Based on III–V Semiconductor Nanowire Forest Fabricated by Lithographyâ€Free Process (Advanced Optical Materials 17/2020). Advanced Optical Materials, 2020, 8, 2070070.	7.3	0

GIL JU LEE

#	Article	IF	CITATIONS
55	Lensless and Optical Physically Unclonable Function with Fibrous Media. , 2021, , .		0
56	Parametric Studies on Wide Field of View Imaging Systems with Curved Image Sensors. , 2017, , .		0
57	Tailored selective thermal emitter for efficient radiative cooling in humid climate. , 2020, , .		Ο
58	Stacked focal plane light field imaging system based on multi-focus microlens array. , 2020, , .		0
59	Ultra-slim, wide field-of-view single lens cameras with designs inspired by an aquatic animal. , 2020, , .		Ο
60	Singleâ€Material, Nearâ€Infrared Selective Absorber Based on Refractive Indexâ€Tunable Tamm Plasmon Structure (Advanced Optical Materials 6/2022). Advanced Optical Materials, 2022, 10, .	7.3	0