
Qiong A Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8246073/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brown Adipose Tissue Heterogeneity, Energy Metabolism, and Beyond. Frontiers in Endocrinology, 2021, 12, 651763.	1.5	38
2	Energy metabolism in brown adipose tissue. FEBS Journal, 2021, 288, 3647-3662.	2.2	35
3	EMT-Derived Alterations in Glutamine Metabolism Sensitize Mesenchymal Breast Cells to mTOR Inhibition. Molecular Cancer Research, 2021, 19, 1546-1558.	1.5	6
4	The B56α subunit of PP2A is necessary for mesenchymal stem cell commitment to adipocyte. EMBO Reports, 2021, 22, e51910.	2.0	2
5	Argininosuccinate lyase is a metabolic vulnerability in breast development and cancer. Npj Systems Biology and Applications, 2021, 7, 36.	1.4	3
6	Dosage effect of multiple genes accounts for multisystem disorder of myotonic dystrophy type 1. Cell Research, 2020, 30, 133-145.	5.7	21
7	LRCH1 deficiency enhances LAT signalosome formation and CD8 ⁺ T cell responses against tumors and pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19388-19398.	3.3	6
8	The Natural Compound Notopterol Binds and Targets JAK2/3 to Ameliorate Inflammation and Arthritis. Cell Reports, 2020, 32, 108158.	2.9	43
9	Mitochondrial division inhibitor (mdivi-1) decreases oxidative metabolism in cancer. British Journal of Cancer, 2020, 122, 1288-1297.	2.9	51
10	ECM1 secreted by HER2-overexpressing breast cancer cells promotes formation of a vascular niche accelerating cancer cell migration and invasion. Laboratory Investigation, 2020, 100, 928-944.	1.7	26
11	Chronic cold exposure enhances glucose oxidation in brown adipose tissue. EMBO Reports, 2020, 21, e50085.	2.0	33
12	Cellular Origins of Beige Fat Cells Revisited. Diabetes, 2019, 68, 1874-1885.	0.3	98
13	Remodeling of Murine Mammary Adipose Tissue during Pregnancy, Lactation, and Involution. Journal of Mammary Gland Biology and Neoplasia, 2019, 24, 207-212.	1.0	20
14	YAP Aggravates Inflammatory Bowel Disease by Regulating M1/M2 Macrophage Polarization and Gut Microbial Homeostasis. Cell Reports, 2019, 27, 1176-1189.e5.	2.9	224
15	Low- and high-thermogenic brown adipocyte subpopulations coexist in murine adipose tissue. Journal of Clinical Investigation, 2019, 130, 247-257.	3.9	134
16	Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice. Journal of Clinical Investigation, 2019, 129, 5327-5342.	3.9	112
17	Peroxisome Proliferator-Activated Receptor <i>\hat{I}^3</i> and Its Role in Adipocyte Homeostasis and Thiazolidinedione-Mediated Insulin Sensitization. Molecular and Cellular Biology, 2018, 38, .	1.1	33
18	An Adipose Tissue Atlas: An Image-Guided Identification of Human-like BAT and Beige Depots in Rodents. Cell Metabolism, 2018, 27, 252-262.e3.	7.2	174

QIONG A WANG

#	Article	IF	CITATIONS
19	α-Tubulin Acetylation Restricts Axon Overbranching by Dampening Microtubule Plus-End Dynamics in Neurons. Cerebral Cortex, 2018, 28, 3332-3346.	1.6	52
20	Adipose Tissue Remodeling and Adipose Precursors. , 2018, , .		0
21	Reversible De-differentiation of Mature White Adipocytes into Preadipocyte-like Precursors during Lactation. Cell Metabolism, 2018, 28, 282-288.e3.	7.2	116
22	Leukemia Cells Remodel Adipocyte Niches and Their Progenitor Functions to Generate Leukemia Favoring Niche. Blood, 2018, 132, 1294-1294.	0.6	0
23	Short-Term Versus Long-Term Effects of Adipocyte Toll-Like Receptor 4 Activation on Insulin Resistance in Male Mice. Endocrinology, 2017, 158, 1260-1270.	1.4	31
24	Human Beige Adipocytes: Epiphenomenon or Drivers of Metabolic Improvements?. Trends in Endocrinology and Metabolism, 2016, 27, 244-246.	3.1	2
25	Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature, 2016, 532, 255-258.	13.7	472
26	Zfp423 Maintains White Adipocyte Identity through Suppression of the Beige Cell Thermogenic Gene Program. Cell Metabolism, 2016, 23, 1167-1184.	7.2	187
27	Autonomous interconversion between adult pancreatic α-cells and β-cells after differential metabolic challenges. Molecular Metabolism, 2016, 5, 437-448.	3.0	14
28	MitoNEET-Parkin Effects in Pancreatic α- and β-Cells, Cellular Survival, and Intrainsular Cross Talk. Diabetes, 2016, 65, 1534-1555.	0.3	55
29	Pdgfrβ+ Mural Preadipocytes Contribute to Adipocyte Hyperplasia Induced by High-Fat-Diet Feeding and Prolonged Cold Exposure in Adult Mice. Cell Metabolism, 2016, 23, 350-359.	7.2	259
30	Impact of tamoxifen on adipocyte lineage tracing: Inducer of adipogenesis and prolonged nuclear translocation of Cre recombinase. Molecular Metabolism, 2015, 4, 771-778.	3.0	103
31	Fibroblast growth factor 7 is a nociceptive modulator secreted via large dense-core vesicles. Journal of Molecular Cell Biology, 2015, 7, 466-475.	1.5	14
32	FMRP-Mediated Axonal Delivery of miR-181d Regulates Axon Elongation by Locally Targeting Map1b and Calm1. Cell Reports, 2015, 13, 2794-2807.	2.9	63
33	FXYD2, a Î ³ subunit of Na+,K+-ATPase, maintains persistent mechanical allodynia induced by inflammation. Cell Research, 2015, 25, 318-334.	5.7	34
34	Adiponectin-Mediated Antilipotoxic Effects in Regenerating Pancreatic Islets. Endocrinology, 2015, 156, 2019-2028.	1.4	41
35	Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation. Nature Cell Biology, 2015, 17, 1099-1111.	4.6	111
36	The AdipoChaser mouse. Adipocyte, 2014, 3, 146-150.	1.3	47

QIONG A WANG

#	Article	IF	CITATIONS
37	Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure. Molecular Metabolism, 2014, 3, 474-483.	3.0	126
38	Differential transendothelial transport of adiponectin complexes. Cardiovascular Diabetology, 2014, 13, 47.	2.7	17
39	Improved methodologies for the study of adipose biology: insights gained and opportunities ahead. Journal of Lipid Research, 2014, 55, 605-624.	2.0	68
40	Adipocyte Inflammation Is Essential for Healthy Adipose Tissue Expansion and Remodeling. Cell Metabolism, 2014, 20, 103-118.	7.2	525
41	Adiponectin is essential for lipid homeostasis and survival under insulin deficiency and promotes β-cell regeneration. ELife, 2014, 3, .	2.8	74
42	Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nature Medicine, 2013, 19, 1338-1344.	15.2	988
43	Time course of histomorphological changes in adipose tissue upon acute lipoatrophy. Nutrition, Metabolism and Cardiovascular Diseases, 2013, 23, 723-731.	1.1	44
44	Targeted Deletion of Adipocytes by Apoptosis Leads to Adipose Tissue Recruitment of Alternatively Activated M2 Macrophages. Endocrinology, 2011, 152, 3074-3081.	1.4	114
45	PKA phosphorylation couples hepatic inositol-requiring enzyme 1α to glucagon signaling in glucose metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15852-15857.	3.3	76
46	Identification and Characterization of a Promoter Cassette Conferring Adipocyte-Specific Gene Expression. Endocrinology, 2010, 151, 2933-2939.	1.4	132
47	Deficiency in hepatic ATP-citrate lyase affects VLDL-triglyceride mobilization and liver fatty acid composition in mice. Journal of Lipid Research, 2010, 51, 2516-2526.	2.0	53
48	Transmembrane Segments Prevent Surface Expression of Sodium Channel Nav1.8 and Promote Calnexin-dependent Channel Degradation*. Journal of Biological Chemistry, 2010, 285, 32977-32987.	1.6	20
49	Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice. Hepatology, 2009, 49, 1166-1175.	3.6	172
50	Leptin Contributes to the Adaptive Responses of Mice to High-Fat Diet Intake through Suppressing the Lipogenic Pathway. PLoS ONE, 2009, 4, e6884.	1.1	74
51	Tyrosine-dependent and -independent actions of leptin receptor in control of energy balance and glucose homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18619-18624.	3.3	55
52	Toxicity of two type II ribosome-inactivating proteins (cinnamomin and ricin) to domestic silkworm larvae. Archives of Insect Biochemistry and Physiology, 2004, 57, 160-165.	0.6	33