Jae-Hong Kim

List of Publications by Citations

Source: https://exaly.com/author-pdf/8246033/jae-hong-kim-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

178 11,154 55 101 h-index g-index citations papers 14,182 189 10 7.09 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
178	Natural organic matter stabilizes carbon nanotubes in the aqueous phase. <i>Environmental Science</i> & amp; Technology, 2007 , 41, 179-84	10.3	716
177	Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks. <i>Environmental Science & Environmental Science & Environment</i>	10.3	605
176	Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters. <i>Environmental Science & Environmental S</i>	27 ^{0.3}	385
175	Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. <i>Nature Nanotechnology</i> , 2018 , 13, 642-650	28.7	375
174	Activation of Persulfates by Graphitized Nanodiamonds for Removal of Organic Compounds. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	361
173	Oxidation of Organic Compounds in Water by Unactivated Peroxymonosulfate. <i>Environmental Science & Compounds</i> , 2018 , 52, 5911-5919	10.3	306
172	The Technology Horizon for Photocatalytic Water Treatment: Sunrise or Sunset?. <i>Environmental Science & Environmental Science </i>	10.3	277
171	Encapsulated triplet-triplet annihilation-based upconversion in the aqueous phase for sub-band-gap semiconductor photocatalysis. <i>Journal of the American Chemical Society</i> , 2012 , 134, 1747	8 ⁻¹⁶ 14	247
170	The role of nanotechnology in tackling global water challenges. <i>Nature Sustainability</i> , 2018 , 1, 166-175	22.1	241
169	Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E9793-E980	1 ^{11.5}	215
168	Facet-dependent photoelectrochemical performance of TiO2 nanostructures: an experimental and computational study. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1520-9	16.4	205
167	Porous Electrospun Fibers Embedding TiO for Adsorption and Photocatalytic Degradation of Water Pollutants. <i>Environmental Science & Environmental Scie</i>	10.3	186
166	Mechanisms of Escherichia coli inactivation by several disinfectants. <i>Water Research</i> , 2010 , 44, 3410-8	12.5	177
165	Activation of Peroxymonosulfate by Surface-Loaded Noble Metal Nanoparticles for Oxidative Degradation of Organic Compounds. <i>Environmental Science & Degradation of Organic Compounds</i> . <i>Environmental Science & Degradation of Organic Compounds</i> . <i>Environmental Science & Degradation of Organic Compounds</i> .	10.3	169
164	High Efficiency Low-Power Upconverting Soft Materials. <i>Chemistry of Materials</i> , 2012 , 24, 2250-2252	9.6	167
163	Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. <i>Journal of Membrane Science</i> , 2000 , 169, 269-276	9.6	159
162	Analysis of CaSO4 scale formation mechanism in various nanofiltration modules. <i>Journal of Membrane Science</i> , 1999 , 163, 63-74	9.6	153

(2011-2013)

161	Comparative analysis of fouling characteristics of ceramic and polymeric microfiltration membranes using filtration models. <i>Journal of Membrane Science</i> , 2013 , 432, 97-105	9.6	137
160	Photochemical production of reactive oxygen species by C60 in the aqueous phase during UV irradiation. <i>Environmental Science & Environmental Science </i>	10.3	135
159	A mechanistic study on boron rejection by sea water reverse osmosis membranes. <i>Journal of Membrane Science</i> , 2006 , 286, 269-278	9.6	134
158	LED revolution: fundamentals and prospects for UV disinfection applications. <i>Environmental Science: Water Research and Technology</i> , 2017 , 3, 188-202	4.2	132
157	Dual-Color Emissive Upconversion Nanocapsules for Differential Cancer Bioimaging In Vivo. <i>ACS Nano</i> , 2016 , 10, 1512-21	16.7	130
156	Surface-loaded metal nanoparticles for peroxymonosulfate activation: Efficiency and mechanism reconnaissance. <i>Applied Catalysis B: Environmental</i> , 2019 , 241, 561-569	21.8	124
155	Reinventing Fenton Chemistry: Iron Oxychloride Nanosheet for pH-Insensitive H2O2 Activation. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 186-191	11	120
154	Reaction of water-stable C60 aggregates with ozone. <i>Environmental Science & Environmental Science & E</i>	10.3	115
153	Harnessing low energy photons (635 nm) for the production of H2O2 using upconversion nanohybrid photocatalysts. <i>Energy and Environmental Science</i> , 2016 , 9, 1063-1073	35.4	111
152	Photochemical and antimicrobial properties of novel C60 derivatives in aqueous systems. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	110
151	Activation of Oxygen and Hydrogen Peroxide by Copper(II) Coupled with Hydroxylamine for Oxidation of Organic Contaminants. <i>Environmental Science & Environmental Science & En</i>	10.3	110
150	Photocatalytic hydrogen peroxide production by anthraquinone-augmented polymeric carbon nitride. <i>Applied Catalysis B: Environmental</i> , 2018 , 229, 121-129	21.8	96
149	Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic HO production. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 6376-6382	11.5	95
148	PolyDADMAC and dimethylamine as precursors of N-nitrosodimethylamine during ozonation: reaction kinetics and mechanisms. <i>Environmental Science & Environmental Science & Envi</i>	10.3	94
147	Advanced Materials, Technologies, and Complex Systems Analyses: Emerging Opportunities to Enhance Urban Water Security. <i>Environmental Science & Enhance & Mater Security</i> . 2017, 51, 10274-10281	10.3	93
146	Removal of phenol and substituted phenols by newly developed emulsion liquid membrane process. <i>Water Research</i> , 2006 , 40, 1763-72	12.5	93
145	Dispersion of C(60) in natural water and removal by conventional drinking water treatment processes. <i>Water Research</i> , 2009 , 43, 2463-70	12.5	90
144	Photosensitized oxidation of emerging organic pollutants by tetrakis CII aminofullerene-derivatized silica under visible light irradiation. <i>Environmental Science & Environmental Science & Technology</i> 2011, 45, 10598-604	10.3	85

143	3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics. <i>Biosensors and Bioelectronics</i> , 2017 , 89, 187-200	11.8	82
142	Mechanism of C60 photoreactivity in water: fate of triplet state and radical anion and production of reactive oxygen species. <i>Environmental Science & Environmental Science &</i>	10.3	82
141	Robust Co-catalytic Performance of Nanodiamonds Loaded on WO3 for the Decomposition of Volatile Organic Compounds under Visible Light. <i>ACS Catalysis</i> , 2016 , 6, 8350-8360	13.1	81
140	Converting visible light into UVC: microbial inactivation by Pr(3+)-activated upconversion materials. <i>Environmental Science & Environmental &</i>	10.3	80
139	Investigating synergism during sequential inactivation of Bacillus subtilis spores with several disinfectants. <i>Water Research</i> , 2006 , 40, 2911-20	12.5	76
138	Transformation of aggregated C60 in the aqueous phase by UV irradiation. <i>Environmental Science & Eamp; Technology</i> , 2009 , 43, 4878-83	10.3	74
137	Triplet-triplet annihilation upconversion in CdS-decorated SiO2 nanocapsules for sub-bandgap photocatalysis. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 318-25	9.5	69
136	Differential natural organic matter fouling of ceramic versus polymeric ultrafiltration membranes. <i>Water Research</i> , 2014 , 48, 43-51	12.5	68
135	Solar Photothermal Disinfection using Broadband-Light Absorbing Gold Nanoparticles and Carbon Black. <i>Environmental Science & Environmental Science & </i>	10.3	68
134	Cooperative Pollutant Adsorption and Persulfate-Driven Oxidation on Hierarchically Ordered Porous Carbon. <i>Environmental Science & Environmental Scien</i>	10.3	66
133	Engineering light: advances in wavelength conversion materials for energy and environmental technologies. <i>Environmental Science & Environmental & Environment</i>	10.3	66
132	Inactivation and surface interactions of MS-2 bacteriophage in a TiO2 photoelectrocatalytic reactor. <i>Water Research</i> , 2011 , 45, 2104-10	12.5	66
131	Modeling boron rejection in pilot- and full-scale reverse osmosis desalination processes. <i>Journal of Membrane Science</i> , 2009 , 338, 119-127	9.6	66
130	C60 aminofullerene immobilized on silica as a visible-light-activated photocatalyst. <i>Environmental Science & Environmental Sc</i>	10.3	64
129	Oxidizing capacity of periodate activated with iron-based bimetallic nanoparticles. <i>Environmental Science & Environmental Sci</i>	10.3	62
128	Red-to-Blue/Cyan/Green Upconverting Microcapsules for Aqueous- and Dry-Phase Color Tuning and Magnetic Sorting. <i>ACS Photonics</i> , 2014 , 1, 382-388	6.3	62
127	Visible-light-induced activation of periodate that mimics dye-sensitization of TiO2: Simultaneous decolorization of dyes and production of oxidizing radicals. <i>Applied Catalysis B: Environmental</i> , 2017 , 203, 475-484	21.8	62
126	Intrapore energy barriers govern ion transport and selectivity of desalination membranes. <i>Science Advances</i> , 2020 , 6,	14.3	58

(2016-2020)

125	Mechanism of Heterogeneous Fenton Reaction Kinetics Enhancement under Nanoscale Spatial Confinement. <i>Environmental Science & Enhance Science & Enhancement Science & Enhancemen</i>	10.3	56	
124	Photocurrent Enhancement from Solid-State Triplet Triplet Annihilation Upconversion of Low-Intensity, Low-Energy Photons. <i>ACS Photonics</i> , 2016 , 3, 784-790	6.3	56	
123	Delineating Mechanisms of Upconversion Enhancement by Li+ Codoping in Y2SiO5:Pr3+. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 12772-12778	3.8	54	
122	Transport behavior of functionalized multi-wall carbon nanotubes in water-saturated quartz sand as a function of tube length. <i>Water Research</i> , 2012 , 46, 4521-31	12.5	54	
121	Chloride-enhanced oxidation of organic contaminants by Cu(II)-catalyzed Fenton-like reaction at neutral pH. <i>Journal of Hazardous Materials</i> , 2018 , 344, 1174-1180	12.8	53	
120	Delineating oxidative processes of aqueous C60 preparations: role of THF peroxide. <i>Environmental Science & Environmental Scie</i>	10.3	53	
119	Removal of N-Nitrosamines and Their Precursors by Nanofiltration and Reverse Osmosis Membranes. <i>Journal of Environmental Engineering, ASCE</i> , 2009 , 135, 788-795	2	52	
118	High-Performance Capacitive Deionization via Manganese Oxide-Coated, Vertically Aligned Carbon Nanotubes. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 692-700	11	52	
117	Easily Recoverable, Micrometer-Sized TiO Hierarchical Spheres Decorated with Cyclodextrin for Enhanced Photocatalytic Degradation of Organic Micropollutants. <i>Environmental Science & Enhanced Photocatalytic Degradation of Organic Micropollutants</i> . <i>Environmental Science & Enhanced Photocatalytic Degradation of Organic Micropollutants</i> .	10.3	52	
116	N-nitrosodimethylamine (NDMA) formation potential of amine-based water treatment polymers: Effects of in situ chloramination, breakpoint chlorination, and pre-oxidation. <i>Journal of Hazardous Materials</i> , 2015 , 282, 133-40	12.8	51	
115	Effect of encapsulating agents on dispersion status and photochemical reactivity of C60 in the aqueous phase. <i>Environmental Science & Environmental &</i>	10.3	51	
114	Visible light sensitized inactivation of MS-2 bacteriophage by a cationic amine-functionalized C60 derivative. <i>Environmental Science & Environmental </i>	10.3	49	
113	Electronic Tuning of Metal Nanoparticles for Highly Efficient Photocatalytic Hydrogen Peroxide Production. <i>ACS Catalysis</i> , 2019 , 9, 626-631	13.1	47	
112	Cobalt Single Atoms on Tetrapyridomacrocyclic Support for Efficient Peroxymonosulfate Activation. <i>Environmental Science & Environmental Science & Env</i>	10.3	47	
111	Beyond the Pipeline: Assessing the Efficiency Limits of Advanced Technologies for Solar Water Disinfection. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 73-80	11	46	
110	Self-Healing Hydrogel Pore-Filled Water Filtration Membranes. <i>Environmental Science & Environmental &</i>	10.3	45	
109	Large Eddy Simulation of Flow and Tracer Transport in Multichamber Ozone Contactors. <i>Journal of Environmental Engineering, ASCE</i> , 2010 , 136, 22-31	2	45	
108	Plasmon-Enhanced Sub-Bandgap Photocatalysis via Triplet-Triplet Annihilation Upconversion for Volatile Organic Compound Degradation. <i>Environmental Science & Description (Compound Degradation)</i> 11184-11	1 9 2.3	45	

107	Mechanisms of antibiotic removal by nanofiltration membranes: Model development and application. <i>Journal of Membrane Science</i> , 2012 , 389, 234-244	9.6	44
106	The effect of baffle spacing on hydrodynamics and solute transport in serpentine contact tanks. Journal of Hydraulic Research/De Recherches Hydrauliques, 2013, 51, 558-568	1.9	44
105	Adsorption, desorption, and steady-state removal of 17Eestradiol by nanofiltration membranes. <i>Journal of Membrane Science</i> , 2008 , 319, 38-43	9.6	44
104	1,4-Dioxane as an emerging water contaminant: State of the science and evaluation of research needs. <i>Science of the Total Environment</i> , 2019 , 690, 853-866	10.2	43
103	Removal of biological and non-biological viral surrogates by spiral-wound reverse osmosis membrane elements with intact and compromised integrity. <i>Water Research</i> , 2004 , 38, 3821-32	12.5	43
102	Role of disinfectant concentration and pH in the inactivation kinetics of Cryptosporidium parvum oocysts with ozone and monochloramine. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	43
101	Water Disinfection in Rural Areas Demands Unconventional Solar Technologies. <i>Accounts of Chemical Research</i> , 2019 , 52, 1187-1195	24.3	42
100	Full-scale simulation of seawater reverse osmosis desalination processes for boron removal: Effect of membrane fouling. <i>Water Research</i> , 2012 , 46, 3796-804	12.5	41
99	Single-Atom Pt Catalyst for Effective CE Bond Activation via Hydrodefluorination. <i>ACS Catalysis</i> , 2018 , 8, 9353-9358	13.1	41
98	Investigating synergism during sequential inactivation of MS-2 phage and Bacillus subtilis spores with UV/H2O2 followed by free chlorine. <i>Water Research</i> , 2011 , 45, 1063-70	12.5	40
97	Escherichia coli inactivation by water-soluble, ozonated C60 derivative: kinetics and mechanisms. <i>Environmental Science & Environmental Science & Env</i>	10.3	40
96	Oxidation of dithiocarbamates to yield N-nitrosamines by water disinfection oxidants. <i>Water Research</i> , 2013 , 47, 725-36	12.5	39
95	Simple synthetic method toward solid supported c60 visible light-activated photocatalysts. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	38
94	Triple-Emulsion Microcapsules for Highly Efficient Multispectral Upconversion in the Aqueous Phase. <i>ACS Photonics</i> , 2015 , 2, 633-638	6.3	37
93	Fluorinated TiOlas an ambient light-activated virucidal surface coating material for the control of human norovirus. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2014 , 140, 315-20	6.7	37
92	The Myth of Visible Light Photocatalysis Using Lanthanide Upconversion Materials. <i>Environmental Science & Environmental Scien</i>	10.3	34
91	Modeling Cryptosporidium parvum oocyst inactivation and bromate formation in a full-scale ozone contactor. <i>Environmental Science & Environmental Scie</i>	10.3	34
90	Interaction of Clwith water: first-principles modeling and environmental implications. Environmental Science & amp; Technology, 2015, 49, 1529-36	10.3	33

(2020-2004)

89	Simultaneous prediction of Cryptosporidium parvum oocyst inactivation and bromate formation during ozonation of synthetic waters. <i>Environmental Science & Environmental Scien</i>	10.3	33
88	Electrified Membranes for Water Treatment Applications. ACS ES&T Engineering, 2021, 1, 725-752		33
87	Improving the Visible Light Photoactivity of Supported Fullerene Photocatalysts through the Use of [CI]Fullerene. <i>Environmental Science & Environmental Science & Environment</i>	10.3	32
86	Microbial removal and integrity monitoring of ro and NF Membranes. <i>Journal - American Water Works Association</i> , 2003 , 95, 105-119	0.5	32
85	Amorphous Pd-Loaded TiO Electrode for Direct Anodic Destruction of Perfluorooctanoic Acid. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	32
84	Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater he perspective. <i>Environmental Science: Nano</i> , 2020 , 7, 2178-2194	7.1	31
83	Toward Microcapsule-Embedded Self-Healing Membranes. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 216-221	11	31
82	Stochastic cost estimation approach for full-scale reverse osmosis desalination plants. <i>Journal of Membrane Science</i> , 2010 , 364, 52-64	9.6	30
81	Optimum emulsion liquid membranes stabilized by non-Newtonian conversion in Taylor Couette flow. <i>Chemical Engineering Science</i> , 2004 , 59, 5725-5734	4.4	30
80	Differential photoactivity of aqueous [C60] and [C70] fullerene aggregates. <i>Environmental Science & Environmental Science</i>	10.3	29
79	Modeling Cryptosporidium parvum oocyst inactivation and bromate in a flow-through ozone contactor treating natural water. <i>Water Research</i> , 2007 , 41, 467-75	12.5	29
78	Flexible and Micropatternable Triplet-Triplet Annihilation Upconversion Thin Films for Photonic Device Integration and Anticounterfeiting Applications. <i>ACS Applied Materials & Device</i> , 2018, 10, 8985-8992	9.5	28
77	Upconversion under polychromatic excitation: Y2SiO5:Pr3+, Li+ converts violet, cyan, green, and yellow light into UVC. <i>Optical Materials</i> , 2013 , 35, 2347-2351	3.3	28
76	Cationic Fullerene Aggregates with Unprecedented Virus Photoinactivation Efficiencies in Water. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 290-294	11	27
75	Stability of water-stable C60 clusters to OH radical oxidation and hydrated electron reduction. <i>Environmental Science & Environmental Science & Envir</i>	10.3	27
74	Reaction kinetics and transformation of carbadox and structurally related compounds with aqueous chlorine. <i>Environmental Science & Environmental Scie</i>	10.3	27
73	Environmental Materials beyond and below the Nanoscale: Single-Atom Catalysts. <i>ACS ES&T Engineering</i> , 2021 , 1, 157-172		27
72	Hierarchical BiOCO wrapped with modified graphene oxide for adsorption-enhanced photocatalytic inactivation of antibiotic resistant bacteria and resistance genes. <i>Water Research</i> ,	12.5	26

71	Controlled TiO Growth on Reverse Osmosis and Nanofiltration Membranes by Atomic Layer Deposition: Mechanisms and Potential Applications. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	26
70	Visible-to-UVC upconversion efficiency and mechanisms of Lu7O6F9:Pr3+ and Y2SiO5:Pr3+ ceramics. <i>Journal of Luminescence</i> , 2015 , 160, 202-209	3.8	25
69	Titanium Dioxide-Layered Double Hydroxide Composite Material for Adsorption-Photocatalysis of Water Pollutants. <i>Langmuir</i> , 2019 , 35, 8699-8708	4	24
68	[C70] fullerene-sensitized triplet-triplet annihilation upconversion. <i>Chemical Communications</i> , 2013 , 49, 10829-31	5.8	24
67	Toward microvascular network-embedded self-healing membranes. <i>Journal of Membrane Science</i> , 2017 , 531, 94-102	9.6	23
66	Coupling Light Emitting Diodes with Photocatalyst-Coated Optical Fibers Improves Quantum Yield of Pollutant Oxidation. <i>Environmental Science & Enphysiology</i> , 2017 , 51, 13319-13326	10.3	23
65	Modeling aspects of flow and solute transport simulations in water disinfection tanks. <i>Applied Mathematical Modelling</i> , 2013 , 37, 8039-8050	4.5	23
64	Membrane-Confined Iron Oxychloride Nanocatalysts for Highly Efficient Heterogeneous Fenton Water Treatment. <i>Environmental Science & Environmental Sci</i>	10.3	23
63	Enhanced Triplet Triplet Annihilation Upconversion in Dual-Sensitizer Systems: Translating Broadband Light Absorption to Practical Solid-State Materials. <i>ACS Photonics</i> , 2017 , 4, 127-137	6.3	22
62	Using 3D LIF to investigate and improve performance of a multichamber ozone contactor. <i>Journal - American Water Works Association</i> , 2010 , 102, 61-70	0.5	22
61	Escherichia coli Inactivation by UVC-Irradiated C60: kinetics and mechanisms. <i>Environmental Science & Environmental &</i>	10.3	22
60	Edible Dye-Enhanced Solar Disinfection with Safety Indication. <i>Environmental Science & Enp;</i> Technology, 2018 , 52, 13361-13369	10.3	22
59	Triplet-Triplet Annihilation Upconversion in Broadly Absorbing Layered Film Systems for Sub-Bandgap Photocatalysis. <i>ACS Applied Materials & Description of Sub-Bandgap Photocatalysis</i> . <i>ACS Applied Materials & Description of Sub-Bandgap Photocatalysis</i> . <i>ACS Applied Materials & Description of Sub-Bandgap Photocatalysis</i> .	9.5	21
58	Enhanced hole-dominated photocatalytic activity of doughnut-like porous g-C3N4 driven by down-shifted valance band maximum. <i>Catalysis Today</i> , 2018 , 307, 147-153	5.3	20
57	Electron transfer mediation by aqueous Claggregates in HD/LUV advanced oxidation of indigo carmine. <i>Nanoscale</i> , 2014 , 6, 13579-85	7.7	20
56	Inactivation of Cryptosporidium Oocysts in a Pilot-Scale Ozone Bubble-Diffuser Contactor. I: Model Development. <i>Journal of Environmental Engineering, ASCE</i> , 2002 , 128, 514-521	2	19
55	Tertiary amines enhance reactions of organic contaminants with aqueous chlorine. <i>Water Research</i> , 2011 , 45, 6087-96	12.5	18
54	Plasmon-enabled degradation of organic micropollutants in water by visible-light illumination of Janus gold nanorods. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 15473-15481	11.5	17

(2009-2016)

53	Dual-Functionality Fullerene and Silver Nanoparticle Antimicrobial Composites via Block Copolymer Templates. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 1, 100 (1997) 1	9.5	17
52	Nanoparticle Enhanced Interfacial Solar Photothermal Water Disinfection Demonstrated in 3-D Printed Flow-Through Reactors. <i>Environmental Science & Environmental Science & En</i>	10.3	14
51	Temperature-boosted photocatalytic H production and charge transfer kinetics on TiO under UV and visible light. <i>Photochemical and Photobiological Sciences</i> , 2016 , 15, 1247-1253	4.2	14
50	Photochemical and photophysical properties of sequentially functionalized fullerenes in the aqueous phase. <i>Environmental Science & Environmental & Environmen</i>	10.3	14
49	UV reactor flow visualization and mixing quantification using three-dimensional laser-induced fluorescence. <i>Water Research</i> , 2011 , 45, 3855-62	12.5	14
48	Environmental Applications of Engineered Materials with Nanoconfinement. <i>ACS ES&T Engineering</i> , 2021 , 1, 706-724		14
47	Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis. <i>Nature Communications</i> , 2021 , 12, 5179	17.4	14
46	Different roles of Fe atoms and nanoparticles on g-C3N4 in regulating the reductive activation of ozone under visible light. <i>Applied Catalysis B: Environmental</i> , 2021 , 296, 120362	21.8	14
45	Response to Comment on "Activation of Persulfate by Graphitized Nanodiamonds for Removal of Organic Compounds". <i>Environmental Science & Environmental Science & Environmental</i>	10.3	13
44	Enhanced Pollutant Adsorption and Regeneration of Layered Double Hydroxide-Based Photoregenerable Adsorbent. <i>Environmental Science & Environmental Sc</i>	10.3	13
43	Functionalized fullerenes in water: a closer look. Environmental Science & Env	1765.5	12
42	Asymmetric hydrogel-composite membranes with improved water permeability and self-healing property. <i>Journal of Membrane Science</i> , 2019 , 578, 196-202	9.6	12
41	property. <i>Journal of Membrane Science</i> , 2019 , 578, 196-202 Restoring the virus removal capability of damaged bollow fiber membranes via chitosan-based in	9.6 9.6	12
	Restoring the virus removal capability of damaged hollow fiber membranes via chitosan-based in situ healing. <i>Journal of Membrane Science</i> , 2016 , 497, 387-393 Toward in Situ Healing of Compromised Polymeric Membranes. <i>Environmental Science and</i>		
41	Restoring the virus removal capability of damaged hollow fiber membranes via chitosan-based in situ healing. <i>Journal of Membrane Science</i> , 2016 , 497, 387-393 Toward in Situ Healing of Compromised Polymeric Membranes. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 113-116	9.6	11
41 40	Restoring the virus removal capability of damaged hollow fiber membranes via chitosan-based in situ healing. <i>Journal of Membrane Science</i> , 2016 , 497, 387-393 Toward in Situ Healing of Compromised Polymeric Membranes. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 113-116 Bench-scale evaluation of water disinfection by visible-to-UVC upconversion under high-intensity irradiation. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2015 , 153, 405-11 Inactivation of Cryptosporidium Oocysts in a Pilot-Scale Ozone Bubble-Diffuser Contactor. II: Model	9.6	11
40 39	Restoring the virus removal capability of damaged hollow fiber membranes via chitosan-based in situ healing. <i>Journal of Membrane Science</i> , 2016 , 497, 387-393 Toward in Situ Healing of Compromised Polymeric Membranes. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 113-116 Bench-scale evaluation of water disinfection by visible-to-UVC upconversion under high-intensity irradiation. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2015 , 153, 405-11 Inactivation of Cryptosporidium Oocysts in a Pilot-Scale Ozone Bubble-Diffuser Contactor. II: Model Validation and Application. <i>Journal of Environmental Engineering, ASCE</i> , 2002 , 128, 522-532 Synthesis and characterization of visible-to-UVC upconversion antimicrobial ceramics.	9.6 11 6.7	11 11 11

35	Versatile Yolk-Shell Encapsulation: Catalytic, Photothermal, and Sensing Demonstration. <i>Small</i> , 2020 , 16, e2002311	11	10
34	Cathodic Hydrogen Peroxide Electrosynthesis Using Anthraquinone Modified Carbon Nitride on Gas Diffusion Electrode. <i>ACS Applied Energy Materials</i> , 2019 , 2, 7972-7979	6.1	10
33	Farm-to-Tap Water Treatment: Naturally-Sourced Photosensitizers for Enhanced Solar Disinfection of Drinking Water. <i>ACS ES&T Engineering</i> , 2021 , 1, 86-99		10
32	Site-Selective Loading of Single-Atom Pt on TiO2 for Photocatalytic Oxidation and Reductive Hydrodefluorination. <i>ACS ES&T Engineering</i> , 2021 , 1, 512-522		10
31	Improved stability of self-healing hydrogel pore-filled membranes with ionic cross-links. <i>Journal of Membrane Science</i> , 2018 , 553, 1-9	9.6	9
30	Cleaner production option in a food (Kimchi) industry. <i>Journal of Cleaner Production</i> , 2001 , 9, 35-41	10.3	9
29	Evaluation of biologic and non-biologic methods for assessing virus removal by and integrity of high pressure membrane systems. <i>Water Science and Technology: Water Supply</i> , 2003 , 3, 81-92	1.4	9
28	In Situ Healing of Compromised Membranes via Polyethylenimine-Functionalized Silica Microparticles. <i>Environmental Science & Environmental Science & E</i>	10.3	8
27	Ozone-contactor flow visualization and quantification using three-dimensional laser-induced fluorescence. <i>Journal - American Water Works Association</i> , 2010 , 102, 90-99	0.5	8
26	Visualizing and quantifying dose distribution in a UV reactor using three-dimensional laser-induced fluorescence. <i>Environmental Science & Environmental Science & Environment</i>	10.3	7
25	Simultaneous simulation of pathogen inactivation and bromate formation in full-scale ozone contactors by computer software. <i>Journal - American Water Works Association</i> , 2007 , 99, 77-91	0.5	7
24	A Multi-Channel Stopped-Flow Reactor for Measuring Ozone Decay Rate: Instrument Development and Application. <i>Ozone: Science and Engineering</i> , 2007 , 29, 121-129	2.4	7
23	Effect of Elevated Temperature on Ceramic Ultrafiltration of Colloidal Suspensions. <i>Journal of Environmental Engineering, ASCE</i> , 2015 , 141, 04014096	2	5
22	Plant conversion experience: ozone BAC process installation and disinfectant residual control. Journal - American Water Works Association, 2008, 100, 117-128	0.5	5
21	Effect of membrane support material on permeability in the microfiltration of brining wastewater. <i>Desalination</i> , 2001 , 140, 55-65	10.3	5
20	Conflicting Roles of Coordination Number on Catalytic Performance of Single-Atom Pt Catalysts. <i>ACS Catalysis</i> , 2021 , 11, 5586-5592	13.1	5
19	Occurrence of unknown reactive species in UV/HO system leading to false interpretation of hydroxyl radical probe reactions. <i>Water Research</i> , 2021 , 201, 117338	12.5	5
18	Porous Silicon@Photoactivity in Water: Insights into Environmental Fate. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	4

LIST OF PUBLICATIONS

17	Engineered Nanoconfinement Accelerating Spontaneous Manganese-Catalyzed Degradation of Organic Contaminants. <i>Environmental Science & Enphasia (Contaminants)</i> 2021,	10.3	4
16	Hand-ground fullerene-nanodiamond composite for photosensitized water treatment and photodynamic cancer therapy. <i>Journal of Colloid and Interface Science</i> , 2021 , 587, 101-109	9.3	4
15	Modular Hydrogen Peroxide Electrosynthesis Cell with Anthraquinone-Modified Polyaniline Electrocatalyst. <i>ACS ES&T Engineering</i> , 2021 , 1, 446-455		4
14	Yale School of Public Health Symposium: An overview of the challenges and opportunities associated with per- and polyfluoroalkyl substances (PFAS). <i>Science of the Total Environment</i> , 2021 , 778, 146192	10.2	4
13	Opportunities and Challenges for Industrial Water Treatment and Reuse. ACS ES&T Engineering,		3
12	Concentration-Based Decomposition of the Flow around a Confined Cylinder in a UV Disinfection Reactor. <i>Journal of Engineering Mechanics - ASCE</i> , 2015 , 141, 04015050	2.4	2
11	Selective Fluoride Transport in Subnanometer TiO Pores. ACS Nano, 2021, 15, 16828-16838	16.7	2
10	Microstructural origin of selective water oxidation to hydrogen peroxide at low overpotentials: a study on Mn-alloyed TiO2. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 18498-18505	13	2
9	Effects of Coagulation on the Ceramic Membrane Fouling during Surface Water Treatment. <i>Journal of Environmental Engineering, ASCE</i> , 2015 , 141, 04014087	2	1
8	Elucidating the Role of Single-Atom Pd for Electrocatalytic Hydrodechlorination. <i>Environmental Science & Environmental Scienc</i>	10.3	O
7	Utilizing the Broad Electromagnetic Spectrum and Unique Nanoscale Properties for Chemical-Free Water Treatment. <i>Current Opinion in Chemical Engineering</i> , 2021 , 33, 100709-100709	5.4	O
6	Basic Principles of Simulating Boron Removal in Reverse Osmosis Processes 2015 , 285-296		
5	Accelerated oxidation of microcystin-LR by Fe(II)-tetrapolyphosphate/oxygen in the presence of magnesium and calcium ions. <i>Water Research</i> , 2020 , 184, 116172	12.5	
4	Chemical and Photochemical Reactivity of Fullerenes in the Aqueous Phase159-195		
3	Light Sensitized Disinfection with Fullerene. <i>Advances in Environmental Engineering and Green Technologies Book Series</i> ,137-163	0.4	
2	Municipal Water Supply: Ozonation362		
1	Measuring temperature heterogeneities during solar-photothermal heating using quantum dot nanothermometry. <i>Analyst, The</i> , 2021 , 146, 2048-2056	5	