Isabell Albert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8245621/publications.pdf Version: 2024-02-01

ISARELL ALREDT

#	Article	IF	CITATIONS
1	Genotyping-by-sequencing-based identification of Arabidopsis pattern recognition receptor RLP32 recognizing proteobacterial translation initiation factor IF1. Nature Communications, 2022, 13, 1294.	12.8	20
2	An oomycete NLP cytolysin forms transient small pores in lipid membranes. Science Advances, 2022, 8, eabj9406.	10.3	11
3	Cytotoxic activity of Nep1â€like proteins on monocots. New Phytologist, 2022, 235, 690-700.	7.3	9
4	Nep1-like proteins as a target for plant pathogen control. PLoS Pathogens, 2021, 17, e1009477.	4.7	9
5	Distinct immune sensor systems for fungal endopolygalacturonases in closely related Brassicaceae. Nature Plants, 2021, 7, 1254-1263.	9.3	40
6	The tomato receptor CuRe1 senses a cell wall protein to identify Cuscuta as a pathogen. Nature Communications, 2020, 11, 5299.	12.8	36
7	Surface Sensor Systems in Plant Immunity. Plant Physiology, 2020, 182, 1582-1596.	4.8	140
8	Structure-Function Analysis of Immune Receptor <i>At</i> RLP23 with Its Ligand nlp20 and Coreceptors <i>At</i> SOBIR1 and <i>At</i> BAK1. Molecular Plant-Microbe Interactions, 2019, 32, 1038-1046.	2.6	34
9	Molecular basis for functional diversity among microbial Nep1-like proteins. PLoS Pathogens, 2019, 15, e1007951.	4.7	39
10	Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins. Science, 2017, 358, 1431-1434.	12.6	167
11	An RLP23–SOBIR1–BAK1 complex mediates NLP-triggered immunity. Nature Plants, 2015, 1, 15140.	9.3	373
12	A Conserved Peptide Pattern from a Widespread Microbial Virulence Factor Triggers Pattern-Induced Immunity in Arabidopsis. PLoS Pathogens, 2014, 10, e1004491.	4.7	166
13	Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16955-16960.	7.1	189
14	Immune receptor complexes at the plant cell surface. Current Opinion in Plant Biology, 2014, 20, 47-54.	7.1	227
15	Evidence for Functional Diversification Within a Fungal NEP1-Like Protein Family. Molecular Plant-Microbe Interactions, 2013, 26, 278-286.	2.6	192