Magne Runde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8244669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thirty-Six Years of Service Experience with a National Population of Gas-Insulated Substations. IEEE Transactions on Power Delivery, 2010, 25, 2448-2454.	4.3	72
2	Commercial Induction Heaters With High-Temperature Superconductor Coils. IEEE Transactions on Applied Superconductivity, 2011, 21, 1379-1383.	1.7	55
3	Failure Frequencies for High-Voltage Circuit Breakers, Disconnectors, Earthing Switches, Instrument Transformers, and Gas-Insulated Switchgear. IEEE Transactions on Power Delivery, 2013, 28, 529-530.	4.3	42
4	A Review of Results From Thermal Cycling Tests of Hydrogenerator Stator Windings. IEEE Transactions on Energy Conversion, 2011, 26, 890-903.	5.2	29
5	Comparative Study of Arc-Quenching Capabilities of Different Ablation Materials. IEEE Transactions on Power Delivery, 2013, 28, 2065-2070.	4.3	25
6	Wear Rates and Current Distribution of Carbon Brushes on Steel Slip Rings. IEEE Transactions on Energy Conversion, 2009, 24, 835-840.	5.2	21
7	Arc Voltage Characteristics in Ultrahigh-Pressure Nitrogen Including Supercritical Region. IEEE Transactions on Plasma Science, 2018, 46, 187-193.	1.3	16
8	Empirical Relationships Between Air-Load Break Switch Parameters and Interrupting Performance. IEEE Transactions on Power Delivery, 2016, 31, 278-285.	4.3	15
9	Cavity formation in mass-impregnated HVDC subsea cables-mechanisms and critical parameters. IEEE Electrical Insulation Magazine, 2014, 30, 22-33.	0.8	14
10	Current Interruption in Air for a Medium-Voltage Load Break Switch. IEEE Transactions on Power Delivery, 2014, 29, 870-875.	4.3	13
11	Air-Flow Investigation for a Medium-Voltage Load Break Switch. IEEE Transactions on Power Delivery, 2015, 30, 299-306.	4.3	11
12	Wideband Modeling, Field Measurement, and Simulation of a 420-kV Variable Shunt Reactor. IEEE Transactions on Power Delivery, 2015, 30, 1594-1601.	4.3	11
13	AC Loss Measurements on Multi-Filamentary \$ hbox{MgB}_{2}\$ Wires With Non-Magnetic Sheath Materials. IEEE Transactions on Applied Superconductivity, 2013, 23, 8200204-8200204.	1.7	10
14	Fabrication of a Scaled MgB2 Racetrack Demonstrator Pole for a 10-MW Direct-Drive Wind Turbine Generator. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.7	10
15	Interruption in Air for Different Medium-Voltage Switching Duties. IEEE Transactions on Power Delivery, 2015, 30, 161-166.	4.3	9
16	Self-Blast Current Interruption and Adaption to Medium-Voltage Load Current Switching. IEEE Transactions on Power Delivery, 2019, 34, 2204-2210.	4.3	6
17	Medium-Voltage Load Current Interruption in the Presence of Ablating Polymer Material. IEEE Transactions on Power Delivery, 2018, 33, 2535-2540.	4.3	5
18	Electrical stresses on circuit-breaker voltage grading capacitors caused by unequal voltage sharing during switching operations. European Transactions on Electrical Power, 2011, 21, 174-179.	1.0	4

Magne Runde

#	Article	IF	CITATIONS
19	Testing of an MgB2 coil for a wind turbine generator pole. Physica C: Superconductivity and Its Applications, 2021, 587, 1353901.	1.2	4
20	Thermally Induced Mechanical Degradation of Contact Spots in Aluminum Interfaces. IEEE Transactions on Components and Packaging Technologies, 2006, 29, 833-840.	1.3	3
21	Arcing voltage for a medium-voltage air load break switch. , 2015, , .		2
22	Comparison of Different Air Flow Concepts for a Medium Voltage Load Break Switch. IEEE Transactions on Power Delivery, 2020, 35, 508-513.	4.3	1
23	Lifetime Management on Equipment. CIGRE Green Books, 2019, , 539-570.	0.1	0
24	Inside the Aluminum Contact Spot. , 2019, , .		0
25	Modelling of Internal Pressure Dynamics in Mass-Impregnated Non-Draining HVDC Cables. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, , 1-1.	2.9	0