Pavel GalÃ;Å™

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8244079/publications.pdf

Version: 2024-02-01

<u>Ρανει Ωαι Δ</u>ιάτη

#	Article	IF	CITATIONS
1	Highly spherical SiC nanoparticles grown in nonthermal plasma. Plasma Processes and Polymers, 2022, 19, e2100127.	3.0	5
2	Non-Thermal Plasma Sources Based on Cometary and Point-to-Ring Discharges. Molecules, 2022, 27, 238.	3.8	4
3	Non-thermal pulsed plasma activated water: environmentally friendly way for efficient surface modification of semiconductor nanoparticles. Green Chemistry, 2021, 23, 898-911.	9.0	13
4	The Synthesis of Tetrasubstituted Cycloalkenes Bearing π onjugated Substituents and Their Optical Properties. ChemistrySelect, 2021, 6, 9904-9910.	1.5	1
5	The red and blue luminescence in silicon nanocrystals with an oxidized, nitrogen-containing shell. Faraday Discussions, 2020, 222, 240-257.	3.2	8
6	Synthesis and surface modification of light emitting silicon nanoparticles using non-thermal plasma techniques. EPJ Applied Physics, 2020, 89, 20401.	0.7	2
7	Deciphering the role of quantum dot size in the ultrafast charge carrier dynamics at the perovskite–quantum dot interface. Journal of Materials Chemistry C, 2020, 8, 14834-14844.	5.5	9
8	Silicon nanostructures for energy conversion and devices: general discussion. Faraday Discussions, 2020, 222, 433-435.	3.2	0
9	Perovskite-quantum dots interface: Deciphering its ultrafast charge carrier dynamics. Nano Energy, 2018, 49, 471-480.	16.0	23
10	Tuning optical/electrical properties of 2D/3D perovskite by the inclusion of aromatic cation. Physical Chemistry Chemical Physics, 2018, 20, 30189-30199.	2.8	22
11	Influence of non-thermal plasma on structural and electrical properties of globular and nanostructured conductive polymer polypyrrole in water suspension. Scientific Reports, 2017, 7, 15068.	3.3	7
12	Electrochemically grafted polypyrrole changes photoluminescence of electronic states inside nanocrystalline diamond. Journal of Applied Physics, 2014, 116, 223103.	2.5	10
13	Influence of non-diamond carbon phase on recombination mechanisms of photoexcited charge carriers in microcrystalline and nanocrystalline diamond studied by time resolved photoluminescence spectroscopy. Optical Materials Express, 2014, 4, 624.	3.0	19
14	Coherent phonon dynamics in micro- and nanocrystalline diamond. Optics Express, 2013, 21, 31521.	3.4	17
15	Detection of <scp>L</scp> â€nicotine with dissipation mode quartz crystal microbalance using molecular imprinted polymers. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 905-910.	1.8	9
16	Photoluminescence of nanocrystalline titanium dioxide films loaded with silver nanoparticles. Journal of Applied Physics, 2011, 109, .	2.5	24
17	Multicolour Photochromic Response of Ag-TiO ₂ Nanocomposite—Role of Light Illumination. Journal of Nanoscience and Nanotechnology, 2010, 10, 2630-2634.	0.9	4
18	Nanocrystalline titanium dioxide films: Influence of ambient conditions on surface- and volume-related photoluminescence. Journal of Applied Physics, 2010, 108, .	2.5	59