

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8244008/publications.pdf Version: 2024-02-01

IöRC VOCEL

#	Article	IF	CITATIONS
1	CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, 471, 602-607.	27.8	2,093
2	Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment. Cell, 2020, 182, 1419-1440.e23.	28.9	1,162
3	The primary transcriptome of the major human pathogen Helicobacter pylori. Nature, 2010, 464, 250-255.	27.8	1,115
4	Regulation by Small RNAs in Bacteria: Expanding Frontiers. Molecular Cell, 2011, 43, 880-891.	9.7	1,087
5	Hfq and its constellation of RNA. Nature Reviews Microbiology, 2011, 9, 578-589.	28.6	925
6	Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Current Biology, 2001, 11, 941-950.	3.9	695
7	Single-cell RNA-seq: advances and future challenges. Nucleic Acids Research, 2014, 42, 8845-8860.	14.5	695
8	Dual RNA-seq of pathogen and host. Nature Reviews Microbiology, 2012, 10, 618-630.	28.6	660
9	Deep Sequencing Analysis of Small Noncoding RNA and mRNA Targets of the Global Post-Transcriptional Regulator, Hfq. PLoS Genetics, 2008, 4, e1000163.	3.5	515
10	Fast Mapping of Short Sequences with Mismatches, Insertions and Deletions Using Index Structures. PLoS Computational Biology, 2009, 5, e1000502.	3.2	487
11	Experimental approaches to identify non-coding RNAs. Nucleic Acids Research, 2006, 34, 635-646.	14.5	480
12	Dual RNA-seq unveils noncoding RNA functions in host–pathogen interactions. Nature, 2016, 529, 496-501.	27.8	450
13	Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16299-16304.	7.1	426
14	RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. Nucleic Acids Research, 2003, 31, 6435-6443.	14.5	388
15	Swarm Learning for decentralized and confidential clinical machine learning. Nature, 2021, 594, 265-270.	27.8	375
16	The transcriptional landscape and small RNAs of <i>Salmonella enterica</i> serovar Typhimurium. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1277-86.	7.1	373
17	An experimentally anchored map of transcriptional start sites in the model cyanobacterium <i>Synechocystis</i> sp. PCC6803. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2124-2129.	7.1	364
18	The role of Hfq in bacterial pathogens. Current Opinion in Microbiology, 2010, 13, 24-33.	5.1	355

#	Article	IF	CITATIONS
19	The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Molecular Microbiology, 2007, 63, 193-217.	2.5	354
20	An atlas of Hfq-bound transcripts reveals 3′ UTRs as a genomic reservoir of regulatory small RNAs. EMBO Journal, 2012, 31, 4005-4019.	7.8	354
21	Ïf ^E â€dependent small RNAs of <i>Salmonella</i> respond to membrane stress by accelerating global <i>omp</i> mRNA decay. Molecular Microbiology, 2006, 62, 1674-1688.	2.5	330
22	Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Research, 2007, 35, 1018-1037.	14.5	328
23	A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes and Development, 2007, 21, 2804-2817.	5.9	326
24	β-lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nature Communications, 2013, 4, 1610.	12.8	320
25	An expanded evaluation of protein function prediction methods shows an improvement in accuracy. Genome Biology, 2016, 17, 184.	8.8	308
26	Regulatory RNA in Bacterial Pathogens. Cell Host and Microbe, 2010, 8, 116-127.	11.0	300
27	Global <scp>RNA</scp> recognition patterns of postâ€ŧranscriptional regulators Hfq and CsrA revealed by <scp>UV</scp> crosslinking <i>inÂvivo</i> . EMBO Journal, 2016, 35, 991-1011.	7.8	296
28	The ins and outs of group II introns. Trends in Genetics, 2001, 17, 322-331.	6.7	290
29	Longitudinal Multi-omics Analyses Identify Responses of Megakaryocytes, Erythroid Cells, and Plasmablasts as Hallmarks of Severe COVID-19. Immunity, 2020, 53, 1296-1314.e9.	14.3	278
30	Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA. Genes and Development, 2005, 19, 2355-2366.	5.9	271
31	Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nature Structural and Molecular Biology, 2009, 16, 840-846.	8.2	271
32	Analysis of the host microRNA response to <i>Salmonella</i> uncovers the control of major cytokines by the <i>let-7</i> family. EMBO Journal, 2011, 30, 1977-1989.	7.8	270
33	Grad-seq guides the discovery of ProQ as a major small RNA-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11591-11596.	7.1	267
34	Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nature Communications, 2020, 11, 3259.	12.8	265
35	Processing-Independent CRISPR RNAs Limit Natural Transformation in Neisseria meningitidis. Molecular Cell, 2013, 50, 488-503.	9.7	256
36	InÂVivo Cleavage Map Illuminates the Central Role of RNase E in Coding and Non-coding RNA Pathways. Molecular Cell, 2017, 65, 39-51.	9.7	250

#	Article	IF	CITATIONS
37	<i>Salmonella</i> persisters undermine host immune defenses during antibiotic treatment. Science, 2018, 362, 1156-1160.	12.6	249
38	Small non-coding RNAs and the bacterial outer membrane. Current Opinion in Microbiology, 2006, 9, 605-611.	5.1	247
39	Resolving host–pathogen interactions by dual RNA-seq. PLoS Pathogens, 2017, 13, e1006033.	4.7	245
40	The SARS-CoV-2 RNA–protein interactome in infected human cells. Nature Microbiology, 2021, 6, 339-353.	13.3	245
41	The Small RNA IstR Inhibits Synthesis of an SOS-Induced Toxic Peptide. Current Biology, 2004, 14, 2271-2276.	3.9	241
42	Small RNA Binding to 5′ mRNA Coding Region Inhibits Translational Initiation. Molecular Cell, 2008, 32, 827-837.	9.7	237
43	Activation of gene expression by small RNA. Current Opinion in Microbiology, 2009, 12, 674-682.	5.1	236
44	An Antisense RNA Inhibits Translation by Competing with Standby Ribosomes. Molecular Cell, 2007, 26, 381-392.	9.7	224
45	Deep sequencing analysis of the <i>Methanosarcina mazei</i> Gö1 transcriptome in response to nitrogen availability. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21878-21882.	7.1	212
46	Comparative genomics boosts target prediction for bacterial small RNAs. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3487-96.	7.1	208
47	Deep sequencing-based discovery of the Chlamydia trachomatis transcriptome. Nucleic Acids Research, 2010, 38, 868-877.	14.5	206
48	Differential RNA-seq: the approach behind and the biological insight gained. Current Opinion in Microbiology, 2014, 19, 97-105.	5.1	203
49	Specific and pleiotropic patterns of mRNA regulation by ArcZ, a conserved, Hfqâ€dependent small RNA. Molecular Microbiology, 2009, 74, 139-158.	2.5	202
50	Bacterial RNA Biology on a Genome Scale. Molecular Cell, 2018, 70, 785-799.	9.7	201
51	RNA-binding proteins in bacteria. Nature Reviews Microbiology, 2018, 16, 601-615.	28.6	200
52	Two Seemingly Homologous Noncoding RNAs Act Hierarchically to Activate glmS mRNA Translation. PLoS Biology, 2008, 6, e64.	5.6	198
53	Small RNA-Mediated Activation of Sugar Phosphatase mRNA Regulates Glucose Homeostasis. Cell, 2013, 153, 426-437.	28.9	194
54	Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing. Nucleic Acids Research, 2013, 41, 542-553.	14.5	193

#	Article	IF	CITATIONS
55	Experimental approaches for the discovery and characterization of regulatory small RNA. Current Opinion in Microbiology, 2009, 12, 536-546.	5.1	192
56	The Seed Region of a Small RNA Drives the Controlled Destruction of the Target mRNA by the Endoribonuclease RNase E. Molecular Cell, 2012, 47, 943-953.	9.7	192
57	Pervasive postâ€transcriptional control of genes involved in amino acid metabolism by the Hfqâ€dependent GcvB small RNA. Molecular Microbiology, 2011, 81, 1144-1165.	2.5	191
58	A new <i>Vibrio cholerae</i> sRNA modulates colonization and affects release of outer membrane vesicles. Molecular Microbiology, 2008, 70, 100-111.	2.5	187
59	The Primary Transcriptome of Barley Chloroplasts: Numerous Noncoding RNAs and the Dominating Role of the Plastid-Encoded RNA Polymerase Â. Plant Cell, 2012, 24, 123-136.	6.6	186
60	Superfolder GFP reporters validate diverse new mRNA targets of the classic porin regulator, MicF RNA. Molecular Microbiology, 2012, 84, 428-445.	2.5	185
61	The mammalian microRNA response to bacterial infections. RNA Biology, 2012, 9, 742-750.	3.1	183
62	Identification of regulatory RNAs in Bacillus subtilis. Nucleic Acids Research, 2010, 38, 6637-6651.	14.5	180
63	READemption—a tool for the computational analysis of deep-sequencing–based transcriptome data. Bioinformatics, 2014, 30, 3421-3423.	4.1	180
64	A small nonâ€coding RNA of the invasion gene island (SPIâ€1) represses outer membrane protein synthesis from the <i>Salmonella</i> core genome. Molecular Microbiology, 2007, 66, 1174-1191.	2.5	171
65	Evidence for an autonomous 5′ target recognition domain in an Hfq-associated small RNA. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20435-20440.	7.1	168
66	RNA-based recognition and targeting: sowing the seeds of specificity. Nature Reviews Molecular Cell Biology, 2017, 18, 215-228.	37.0	167
67	Target identification of small noncoding RNAs in bacteria. Current Opinion in Microbiology, 2007, 10, 262-270.	5.1	165
68	Small RNAs endow a transcriptional activator with essential repressor functions for single-tier control of a global stress regulon. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12875-12880.	7.1	165
69	A rough guide to the non oding RNA world of <i>Salmonella</i> . Molecular Microbiology, 2009, 71, 1-11.	2.5	162
70	Cross talk between <scp>ABC</scp> transporter m <scp>RNA</scp> s via a target m <scp>RNA</scp> â€derived sponge of the <scp>G</scp> cv <scp>B</scp> small <scp>RNA</scp> . EMBO Journal, 2015, 34, 1478-1492.	7.8	162
71	A 3′ UTR-Derived Small RNA Provides the Regulatory Noncoding Arm of the Inner Membrane Stress Response. Molecular Cell, 2016, 61, 352-363.	9.7	162
72	Trans-Acting Small RNAs and Their Effects on Gene Expression in <i>Escherichia coli</i> and <i>Salmonella enterica</i> . EcoSal Plus, 2020, 9, .	5.4	161

#	Article	IF	CITATIONS
73	Single-cell RNA-seq ties macrophage polarization to growth rate of intracellular Salmonella. Nature Microbiology, 2017, 2, 16206.	13.3	159
74	RNA-Mediated Regulation in Pathogenic Bacteria. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a010298-a010298.	6.2	157
75	Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism. Nucleic Acids Research, 2010, 38, 6620-6636.	14.5	155
76	Systematic deletion of <i>Salmonella</i> small RNA genes identifies CyaR, a conserved CRPâ€dependent riboregulator of OmpX synthesis. Molecular Microbiology, 2008, 68, 890-906.	2.5	154
77	How to find small non-coding RNAs in bacteria. Biological Chemistry, 2005, 386, 1219-1238.	2.5	153
78	Genome organization and DNA accessibility control antigenic variation in trypanosomes. Nature, 2018, 563, 121-125.	27.8	151
79	Regulatory small RNAs from the 3′ regions of bacterial mRNAs. Current Opinion in Microbiology, 2015, 24, 132-139.	5.1	147
80	Early IFN-α signatures and persistent dysfunction are distinguishing features of NK cells in severe COVID-19. Immunity, 2021, 54, 2650-2669.e14.	14.3	145
81	A conserved RpoS-dependent small RNA controls the synthesis of major porin OmpD. Nucleic Acids Research, 2012, 40, 3623-3640.	14.5	142
82	Multiple target regulation by small noncoding RNAs rewires gene expression at the post-transcriptional level. Research in Microbiology, 2009, 160, 278-287.	2.1	136
83	Characterization of the role of ribonucleases in Salmonella small RNA decay. Nucleic Acids Research, 2007, 35, 7651-7664.	14.5	133
84	Comparative analysis of splicing of the complete set of chloroplast group II introns in three higher plant mutants. Nucleic Acids Research, 1999, 27, 3866-3874.	14.5	129
85	Global Maps of ProQ Binding InÂVivo Reveal Target Recognition via RNA Structure and Stability Control at mRNA 3′ Ends. Molecular Cell, 2018, 70, 971-982.e6.	9.7	129
86	Global Regulatory Functions of the Staphylococcus aureus Endoribonuclease III in Gene Expression. PLoS Genetics, 2012, 8, e1002782.	3.5	128
87	Molecular mechanism of mRNA repression in <i>trans</i> by a ProQâ€dependent small RNA. EMBO Journal, 2017, 36, 1029-1045.	7.8	128
88	New RNA-seq approaches for the study of bacterial pathogens. Current Opinion in Microbiology, 2017, 35, 78-87.	5.1	127
89	Identification of cyanobacterial non-coding RNAs by comparative genome analysis. Genome Biology, 2005, 6, R73.	9.6	122
90	Deep sequencing of Salmonella RNA associated with heterologous Hfq proteins in vivo reveals small RNAs as a major target class and identifies RNA processing phenotypes. RNA Biology, 2009, 6, 266-275.	3.1	122

#	Article	IF	CITATIONS
91	Targeted decay of a regulatory small RNA by an adaptor protein for RNase E and counteraction by an anti-adaptor RNA. Genes and Development, 2013, 27, 552-564.	5.9	120
92	Accelerating Discovery and Functional Analysis of Small RNAs with New Technologies. Annual Review of Genetics, 2015, 49, 367-394.	7.6	118
93	Small RNA functions in carbon metabolism and virulence of enteric pathogens. Frontiers in Cellular and Infection Microbiology, 2014, 4, 91.	3.9	116
94	RNA target profiles direct the discovery of virulence functions for the cold-shock proteins CspC and CspE. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6824-6829.	7.1	110
95	A small RNA activates CFA synthase by isoform-specific mRNA stabilization. EMBO Journal, 2013, 32, 2963-2979.	7.8	108
96	LifeTime and improving European healthcare through cell-based interceptive medicine. Nature, 2020, 587, 377-386.	27.8	108
97	Single-cell RNA-sequencing reports growth-condition-specific global transcriptomes of individual bacteria. Nature Microbiology, 2020, 5, 1202-1206.	13.3	104
98	Natural mutations in a <i>Staphylococcus aureus</i> virulence regulator attenuate cytotoxicity but permit bacteremia and abscess formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3101-10.	7.1	103
99	Recognition of the small regulatory RNA RydC by the bacterial Hfq protein. ELife, 2014, 3, .	6.0	100
100	Splicing and intron-internal RNA editing of trnK-matK transcripts in barley plastids: support for MatK as an essential splice factor. Journal of Molecular Biology, 1997, 270, 179-187.	4.2	98
101	Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions. Nucleic Acids Research, 2012, 40, 2020-2031.	14.5	93
102	Photooxidative stressâ€induced and abundant small RNAs in <i>Rhodobacter sphaeroides</i> . Molecular Microbiology, 2009, 74, 1497-1512.	2.5	90
103	Precise branch point mapping and quantification of splicing intermediates. Nucleic Acids Research, 1997, 25, 2030-2031.	14.5	88
104	In vivo expression and purification of aptamer-tagged small RNA regulators. Nucleic Acids Research, 2009, 37, e133-e133.	14.5	86
105	Noncoding RNA control of the making and breaking of sugars. Genes and Development, 2008, 22, 2914-2925.	5.9	85
106	The ancestral SgrS RNA discriminates horizontally acquired <i>Salmonella</i> mRNAs through a single G-U wobble pair. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E757-64.	7.1	84
107	Small RNA-based feedforward loop with AND-gate logic regulates extrachromosomal DNA transfer in Salmonella. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4772-E4781.	7.1	83
108	The cyanobacterial homologue of the RNA chaperone Hfq is essential for motility of Synechocystis sp. PCC 6803. Microbiology (United Kingdom), 2008, 154, 3134-3143.	1.8	81

#	Article	IF	CITATIONS
109	The Major RNA-Binding Protein ProQ Impacts Virulence Gene Expression in Salmonella enterica Serovar Typhimurium. MBio, 2019, 10, .	4.1	81
110	Lariat formation and a hydrolytic pathway in plant chloroplast group II intron splicing. EMBO Journal, 2002, 21, 3794-3803.	7.8	78
111	A Conserved Small RNA Promotes Discoordinate Expression of the glmUS Operon mRNA to Activate GlmS Synthesis. Journal of Molecular Biology, 2007, 373, 521-528.	4.2	72
112	The transcriptional landscape of Chlamydia pneumoniae. Genome Biology, 2011, 12, R98.	9.6	72
113	Host-Pathogen Transcriptomics by Dual RNA-Seq. Methods in Molecular Biology, 2018, 1737, 59-75.	0.9	69
114	The primary transcriptome of Neisseria meningitidis and its interaction with the RNA chaperone Hfq. Nucleic Acids Research, 2017, 45, 6147-6167.	14.5	67
115	Gradâ€seq in a Gramâ€positive bacterium reveals exonucleolytic <scp>sRNA</scp> activation in competence control. EMBO Journal, 2020, 39, e103852.	7.8	66
116	Opposing Wnt signals regulate cervical squamocolumnar homeostasis and emergence of metaplasia. Nature Cell Biology, 2021, 23, 184-197.	10.3	62
117	Emerging roles of RNA modifications in bacteria. Current Opinion in Microbiology, 2016, 30, 50-57.	5.1	61
118	ANNOgesic: a Swiss army knife for the RNA-seq based annotation of bacterial/archaeal genomes. GigaScience, 2018, 7, .	6.4	60
119	Helicobacter pylori interferes with an embryonic stem cell micro RNA cluster to block cell cycle progression. Silence: A Journal of RNA Regulation, 2011, 2, 7.	8.1	59
120	The target spectrum of SdsR small RNA in <i>Salmonella</i> . Nucleic Acids Research, 2016, 44, gkw632.	14.5	57
121	Contribution of Hfq to photooxidative stress resistance and global regulation in <i>Rhodobacter sphaeroides</i> . Molecular Microbiology, 2011, 80, 1479-1495.	2.5	55
122	Cross-species RNA-seq for deciphering host–microbe interactions. Nature Reviews Genetics, 2021, 22, 361-378.	16.3	52
123	RelA protein stimulates the activity of RyhB small RNA by acting on RNA-binding protein Hfq. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4621-4626.	7.1	51
124	An NK Cell Perforin Response Elicited via IL-18 Controls Mucosal Inflammation Kinetics during Salmonella Gut Infection. PLoS Pathogens, 2016, 12, e1005723.	4.7	51
125	Structure of the <i>Escherichia coli</i> ProQ RNA-binding protein. Rna, 2017, 23, 696-711.	3.5	50
126	Gifsy-1 Prophage IsrK with Dual Function as Small and Messenger RNA Modulates Vital Bacterial Machineries. PLoS Genetics, 2016, 12, e1005975.	3.5	47

#	Article	IF	CITATIONS
127	The <i>csgD</i> mRNA as a hub for signal integration via multiple small RNAs. Molecular Microbiology, 2012, 84, 1-5.	2.5	46
128	Discovery of new RNA classes and global RNA-binding proteins. Current Opinion in Microbiology, 2017, 39, 152-160.	5.1	46
129	CRP-cAMP mediates silencing of Salmonella virulence at the post-transcriptional level. PLoS Genetics, 2018, 14, e1007401.	3.5	44
130	Acid stress activation of the σ ^E stress response in <i>Salmonella enterica</i> serovar Typhimurium. Molecular Microbiology, 2009, 71, 1228-1238.	2.5	43
131	Functional expansion of a TCA cycle operon mRNA by a 3′ end-derived small RNA. Nucleic Acids Research, 2019, 47, 2075-2088.	14.5	42
132	Experimental and computational analysis of transcriptional start sites in the cyanobacterium Prochlorococcus MED4. Nucleic Acids Research, 2003, 31, 2890-2899.	14.5	41
133	Small RNAs of theBradyrhizobium/Rhodopseudomonaslineage and their analysis. RNA Biology, 2012, 9, 47-58.	3.1	41
134	Tracheal brush cells release acetylcholine in response to bitter tastants for paracrine and autocrine signaling. FASEB Journal, 2020, 34, 316-332.	0.5	41
135	Dual RNA-seq of Orientia tsutsugamushi informs on host-pathogen interactions for this neglected intracellular human pathogen. Nature Communications, 2020, 11, 3363.	12.8	39
136	Improved bacterial RNA-seq by Cas9-based depletion of ribosomal RNA reads. Rna, 2020, 26, 1069-1078.	3.5	37
137	Global RNA interactome of Salmonella discovers a 5′ UTR sponge for the MicF small RNA that connects membrane permeability to transport capacity. Molecular Cell, 2022, 82, 629-644.e4.	9.7	37
138	An overview of gene regulation in bacteria by small RNAs derived from mRNA 3′ ends. FEMS Microbiology Reviews, 2022, 46, .	8.6	37
139	A Green Fluorescent Protein (GFP)-Based Plasmid System to Study Post-Transcriptional Control of Gene Expression In Vivo. Methods in Molecular Biology, 2009, 540, 301-319.	0.9	34
140	The conserved 3′ UTR-derived small RNA NarS mediates mRNA crossregulation during nitrate respiration. Nucleic Acids Research, 2020, 48, 2126-2143.	14.5	34
141	Global discovery of bacterial RNA-binding proteins by RNase-sensitive gradient profiles reports a new FinO domain protein. Rna, 2020, 26, 1448-1463.	3.5	34
142	A global data-driven census of <i>Salmonella</i> small proteins and their potential functions in bacterial virulence. MicroLife, 2020, 1, .	2.1	34
143	Small RNAs promote mRNA stability to activate the synthesis of virulence factors. Molecular Microbiology, 2010, 78, 1327-1331.	2.5	33
144	Genome-wide transcription start site profiling in biofilm-grown Burkholderia cenocepacia J2315. BMC Genomics, 2015, 16, 775.	2.8	33

#	Article	IF	CITATIONS
145	An RNA-centric global view of <i>Clostridioides difficile</i> reveals broad activity of Hfq in a clinically important gram-positive bacterium. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	33
146	The minimal meningococcal ProQ protein has an intrinsic capacity for structure-based global RNA recognition. Nature Communications, 2020, 11, 2823.	12.8	31
147	Grad-seq shines light on unrecognized RNA and protein complexes in the model bacterium EscherichiaÂcoli. Nucleic Acids Research, 2020, 48, 9301-9319.	14.5	30
148	An RNA biology perspective on speciesâ€specific programmable RNA antibiotics. Molecular Microbiology, 2020, 113, 550-559.	2.5	30
149	Regulatory RNAs in prokaryotes: here, there and everywhere. Molecular Microbiology, 2009, 74, 261-269.	2.5	28
150	<i>cis</i> -Encoded Small RNAs, a Conserved Mechanism for Repression of Polysaccharide Utilization in Bacteroides. Journal of Bacteriology, 2016, 198, 2410-2418.	2.2	27
151	The CRISPR/Cas system in <i>Neisseria meningitidis</i> affects bacterial adhesion to human nasopharyngeal epithelial cells. RNA Biology, 2019, 16, 390-396.	3.1	27
152	A systematic analysis of the RNA-targeting potential of secreted bacterial effector proteins. Scientific Reports, 2017, 7, 9328.	3.3	25
153	Triple RNA-Seq Reveals Synergy in a Human Virus-Fungus Co-infection Model. Cell Reports, 2020, 33, 108389.	6.4	25
154	Grad-seq identifies KhpB as a global RNA-binding protein in <i>Clostridioides difficile</i> that regulates toxin production. MicroLife, 2021, 2, .	2.1	25
155	Experimental tools to identify RNA-protein interactions inHelicobacter pylori. RNA Biology, 2012, 9, 520-531.	3.1	24
156	dRNA-Seq Reveals Genomewide TSSs and Noncoding RNAs of Plant Beneficial Rhizobacterium Bacillus amyloliquefaciens FZB42. PLoS ONE, 2015, 10, e0142002.	2.5	24
157	RNA landscape of the emerging cancer-associated microbe Fusobacterium nucleatum. Nature Microbiology, 2021, 6, 1007-1020.	13.3	23
158	A Candidate Approach Implicates the Secreted Salmonella Effector Protein SpvB in P-Body Disassembly. PLoS ONE, 2011, 6, e17296.	2.5	23
159	A small RNA serving both the Hfq and CsrA regulons. Genes and Development, 2013, 27, 1073-1078.	5.9	22
160	APRICOT: an integrated computational pipeline for the sequence-based identification and characterization of RNA-binding proteins. Nucleic Acids Research, 2017, 45, e96-e96.	14.5	22
161	A Grad-seq View of RNA and Protein Complexes in Pseudomonas aeruginosa under Standard and Bacteriophage Predation Conditions. MBio, 2021, 12, .	4.1	22
162	An Advanced Human Intestinal Coculture Model Reveals Compartmentalized Host and Pathogen Strategies during Salmonella Infection. MBio, 2020, 11, .	4.1	21

#	Article	IF	CITATIONS
163	Translational Control by RNA-RNA Interaction: Improved Computation of RNA-RNA Binding Thermodynamics. Communications in Computer and Information Science, 2008, , 114-127.	0.5	21
164	Global RNA profiles show target selectivity and physiological effects of peptide-delivered antisense antibiotics. Nucleic Acids Research, 2021, 49, 4705-4724.	14.5	20
165	Investigating CRISPR RNA Biogenesis and Function Using RNA-seq. Methods in Molecular Biology, 2015, 1311, 1-21.	0.9	19
166	Global snapshots of bacterial <scp>RNA</scp> networks. EMBO Journal, 2017, 36, 245-247.	7.8	19
167	Introducing differential RNA-seq mapping to track the early infection phase for <i>Pseudomonas</i> phage E,KZ. RNA Biology, 2021, 18, 1099-1110.	3.1	19
168	Innovative developments and emerging technologies in RNA therapeutics. RNA Biology, 2022, 19, 313-332.	3.1	19
169	The World of Stable Ribonucleoproteins and Its Mapping With Grad-Seq and Related Approaches. Frontiers in Molecular Biosciences, 2021, 8, 661448.	3.5	18
170	Comprehensive analysis of PNA-based antisense antibiotics targeting various essential genes in uropathogenic <i>Escherichia coli</i> . Nucleic Acids Research, 2022, 50, 6435-6452.	14.5	18
171	Complete $5\hat{a}\in^2$ and $3\hat{a}\in^2$ end maturation of group II intron-containing tRNA precursors. Rna, 2001, 7, 285-292.	3.5	17
172	The primary transcriptome of the Escherichia coli O104:H4 pAA plasmid and novel insights into its virulence gene expression and regulation. Scientific Reports, 2016, 6, 35307.	3.3	17
173	Stressâ€induced host membrane remodeling protects from infection by nonâ€motile bacterial pathogens. EMBO Journal, 2018, 37, .	7.8	17
174	MAPS integrates regulation of actin-targeting effector SteC into the virulence control network of Salmonella small RNA PinT. Cell Reports, 2021, 34, 108722.	6.4	17
175	Conditional Hfq Association with Small Noncoding RNAs in Pseudomonas aeruginosa Revealed through Comparative UV Cross-Linking Immunoprecipitation Followed by High-Throughput Sequencing. MSystems, 2019, 4, .	3.8	17
176	Single-Nucleotide RNA Maps for the Two Major Nosocomial Pathogens Enterococcus faecalis and Enterococcus faecium. Frontiers in Cellular and Infection Microbiology, 2020, 10, 600325.	3.9	16
177	Molecular phenotyping of infection-associated small non-coding RNAs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160081.	4.0	15
178	An RNA Surprise in Bacterial Effector Mechanisms. Cell Host and Microbe, 2019, 26, 709-711.	11.0	15
179	Use of Aptamer Tagging to Identify In Vivo Protein Binding Partners of Small Regulatory RNAs. Methods in Molecular Biology, 2012, 905, 177-200.	0.9	14
180	An RNA trap helps bacteria get the most out of chitosugars. Molecular Microbiology, 2009, 73, 737-741.	2.5	13

#	Article	IF	CITATIONS
181	Analysis of A to I editing of miRNA in macrophages exposed to Salmonella. RNA Biology, 2010, 7, 621-627.	3.1	12
182	A bacterial seek-and-destroy system for foreign DNA. Science, 2014, 344, 972-973.	12.6	12
183	Dual 3'Seq using deepSuperSAGE uncovers transcriptomes of interacting Salmonella enterica Typhimurium and human host cells. BMC Genomics, 2015, 16, 323.	2.8	12
184	Nuclear lnc <scp>RNA</scp> stabilization in the host response to bacterial infection. EMBO Journal, 2018, 37, .	7.8	12
185	<i>In vivo</i> targets of <i>Salmonella</i> FinO include a FinP-like small RNA controlling copy number of a cohabitating plasmid. Nucleic Acids Research, 2021, 49, 5319-5335.	14.5	12
186	Same Same but Different: New Structural Insight into CRISPR-Cas Complexes. Molecular Cell, 2013, 52, 4-7.	9.7	11
187	Cellular RNA Targets of Cold Shock Proteins CspC and CspE and Their Importance for Serum Resistance in Septicemic Escherichia coli. MSystems, 2022, 7, .	3.8	11
188	Amidochelocardin Overcomes Resistance Mechanisms Exerted on Tetracyclines and Natural Chelocardin. Antibiotics, 2020, 9, 619.	3.7	10
189	CRISPRs extending their reach: prokaryotic RNAi protein Cas9 recruited for gene regulation. EMBO Journal, 2013, 32, 1802-1804.	7.8	9
190	Scanning mutagenesis of RNA-binding protein ProQ reveals a quality control role for the Lon protease. Rna, 2021, 27, 1512-1527.	3.5	9
191	Approaches to Identify Novel Non-messenger RNAs in Bacteria and to Investigate their Biological Functions: Functional Analysis of Identified Non-mRNAs. , 0, , 614-642.		8
192	A Glimpse at the Evolution of Virulence Control. Cell Host and Microbe, 2008, 4, 310-312.	11.0	7
193	Sweet Business: Spot42 RNA Networks with CRP to Modulate Catabolite Repression. Molecular Cell, 2011, 41, 245-246.	9.7	7
194	Bacterial regulatory mechanisms: the gene and beyond. Current Opinion in Microbiology, 2013, 16, 109-111.	5.1	7
195	A genome-wide transcriptomic analysis of embryos fathered by obese males in a murine model of diet-induced obesity. Scientific Reports, 2021, 11, 1979.	3.3	6
196	SPI2 T3SS effectors facilitate enterocyte apical to basolateral transmigration of <i>Salmonella</i> -containing vacuoles <i>in vivo</i> . Gut Microbes, 2021, 13, 1973836.	9.8	6
197	Approaches to Identify Novel Non-messenger RNAs in Bacteria and to Investigate their Biological Functions: RNA Mining. , 0, , 595-613.		5
198	The End Is Not the End: Remnants of tRNA Precursors Live On to Sponge Up Small Regulatory RNAs. Molecular Cell, 2015, 58, 389-390.	9.7	5

#	Article	IF	CITATIONS
199	Impact of pseudouridylation, substrate fold, and degradosome organization on the endonuclease activity of RNase E. Rna, 2021, 27, 1339-1352.	3.5	5
200	Analysis of the RNA and Protein Complexome by Grad-seq. Methods in Molecular Biology, 2021, 2300, 183-201.	0.9	3
201	<scp>A</scp> lexander <scp>B</scp> öhm (1971–2012). Molecular Microbiology, 2013, 88, 219-221.	2.5	2
202	The DNA polymerase of bacteriophage YerA41 replicates its T-modified DNA in a primer-independent manner. Nucleic Acids Research, 2022, , .	14.5	2
203	Small <scp>RNAs</scp> in the Antarctic bacterium <i>Pseudomonas extremaustralis</i> responsive to oxygen availability and oxidative stress. Environmental Microbiology Reports, 2022, 14, 604-615.	2.4	2
204	Hfq-associated Regulatory Small RNAs. , 2012, , 15-50.		1
205	Regulatory Mechanisms of Special Significance: Role of Small RNAs in Virulence Regulation. , 0, , 491-527.		1