List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8243308/publications.pdf Version: 2024-02-01

LUN CHEN

#	Article	IF	CITATIONS
1	Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nature Catalysis, 2019, 2, 290-296.	34.4	1,056
2	Largeâ€ 5 cale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions. Advanced Materials, 2011, 23, 3944-3948.	21.0	1,012
3	Defect Graphene as a Trifunctional Catalyst for Electrochemical Reactions. Advanced Materials, 2016, 28, 9532-9538.	21.0	961
4	Nanoporous Graphitic-C ₃ N ₄ @Carbon Metal-Free Electrocatalysts for Highly Efficient Oxygen Reduction. Journal of the American Chemical Society, 2011, 133, 20116-20119.	13.7	958
5	A Leavening Strategy to Prepare Reduced Graphene Oxide Foams. Advanced Materials, 2012, 24, 4144-4150.	21.0	765
6	Extension of The Stöber Method to the Preparation of Monodisperse Resorcinol–Formaldehyde Resin Polymer and Carbon Spheres. Angewandte Chemie - International Edition, 2011, 50, 5947-5951.	13.8	745
7	Graphene Defects Trap Atomic Ni Species for Hydrogen and Oxygen Evolution Reactions. CheM, 2018, 4, 285-297.	11.7	624
8	Facile Oxygen Reduction on a Threeâ€Dimensionally Ordered Macroporous Graphitic C ₃ N ₄ /Carbon Composite Electrocatalyst. Angewandte Chemie - International Edition, 2012, 51, 3892-3896.	13.8	588
9	Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nature Chemistry, 2020, 12, 717-724.	13.6	485
10	Coordination of Atomic Co–Pt Coupling Species at Carbon Defects as Active Sites for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2018, 140, 10757-10763.	13.7	464
11	Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nature Catalysis, 2019, 2, 688-695.	34.4	423
12	BiVO ₄ /CeO ₂ Nanocomposites with High Visible-Light-Induced Photocatalytic Activity. ACS Applied Materials & Interfaces, 2012, 4, 3718-3723.	8.0	408
13	Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale, 2014, 6, 11988-11994.	5.6	406
14	CoS Quantum Dot Nanoclusters for Highâ€Energy Potassiumâ€Ion Batteries. Advanced Functional Materials, 2017, 27, 1702634.	14.9	391
15	Heterogeneous Singleâ€Atom Catalysts for Electrochemical CO ₂ Reduction Reaction. Advanced Materials, 2020, 32, e2001848.	21.0	366
16	Scalable Oneâ€Step Wetâ€Spinning of Graphene Fibers and Yarns from Liquid Crystalline Dispersions of Graphene Oxide: Towards Multifunctional Textiles. Advanced Functional Materials, 2013, 23, 5345-5354.	14.9	354
17	Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films. Journal of Colloid and Interface Science, 2014, 417, 402-409.	9.4	339
18	High-Performance Multifunctional Graphene Yarns: Toward Wearable All-Carbon Energy Storage Textiles. ACS Nano, 2014, 8, 2456-2466.	14.6	331

#	Article	IF	CITATIONS
19	Electrocatalytic reduction of nitrate – a step towards a sustainable nitrogen cycle. Chemical Society Reviews, 2022, 51, 2710-2758.	38.1	323
20	A "skeleton/skin―strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy and Environmental Science, 2012, 5, 8726.	30.8	312
21	Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy and Environmental Science, 2011, 4, 1440.	30.8	310
22	Flexible free-standing carbon nanotube films for model lithium-ion batteries. Carbon, 2009, 47, 2976-2983.	10.3	306
23	A Defect-Driven Metal-free Electrocatalyst for Oxygen Reduction in Acidic Electrolyte. CheM, 2018, 4, 2345-2356.	11.7	292
24	Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Materials Horizons, 2019, 6, 219-249.	12.2	289
25	Development of MoS ₂ –CNT Composite Thin Film from Layered MoS ₂ for Lithium Batteries. Advanced Energy Materials, 2013, 3, 798-805.	19.5	282
26	High-Performance Flexible All-Solid-State Supercapacitor from Large Free-Standing Graphene-PEDOT/PSS Films. Scientific Reports, 2015, 5, 17045.	3.3	243
27	High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide. Environmental Science & Technology, 2015, 49, 13566-13574.	10.0	241
28	A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. Journal of Materials Chemistry A, 2014, 2, 13093-13102.	10.3	236
29	Mo ₂ C/CNT: An Efficient Catalyst for Rechargeable Li–CO ₂ Batteries. Advanced Functional Materials, 2017, 27, 1700564.	14.9	236
30	Yolk–Shell Structured FeP@C Nanoboxes as Advanced Anode Materials for Rechargeable Lithiumâ€∤Potassiumâ€Ion Batteries. Advanced Functional Materials, 2019, 29, 1808291.	14.9	232
31	Carbon nanotube architectures as catalyst supports for proton exchange membrane fuel cells. Energy and Environmental Science, 2010, 3, 1286.	30.8	218
32	Highly Compressible and Allâ€Solidâ€State Supercapacitors Based on Nanostructured Composite Sponge. Advanced Materials, 2015, 27, 6002-6008.	21.0	217
33	Edgeâ€Rich Feâ~'N ₄ Active Sites in Defective Carbon for Oxygen Reduction Catalysis. Advanced Materials, 2020, 32, e2000966.	21.0	215
34	Flexible, Aligned Carbon Nanotube/Conducting Polymer Electrodes for a Lithium-Ion Battery. Chemistry of Materials, 2007, 19, 3595-3597.	6.7	212
35	Compositional effects of PEDOT-PSS/single walled carbon nanotube films on supercapacitor device performance. Journal of Materials Chemistry, 2011, 21, 15987.	6.7	201
36	Integrated Carbon/Red Phosphorus/Graphene Aerogel 3D Architecture via Advanced Vaporâ€Redistribution for Highâ€Energy Sodiumâ€ion Batteries. Advanced Energy Materials, 2016, 6, 1601037.	19.5	198

#	Article	IF	CITATIONS
37	Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries. Energy Storage Materials, 2019, 19, 408-423.	18.0	189
38	Carbon Nanotube – Reduced Graphene Oxide Composites for Thermal Energy Harvesting Applications. Advanced Materials, 2013, 25, 6602-6606.	21.0	178
39	Vapor Phase Polymerization of Pyrrole and Thiophene Using Iron(III) Sulfonates as Oxidizing Agents. Macromolecules, 2004, 37, 5930-5935.	4.8	172
40	Engineered 2D Transition Metal Dichalcogenides—A Vision of Viable Hydrogen Evolution Reaction Catalysis. Advanced Energy Materials, 2020, 10, 1903870.	19.5	169
41	Defectâ€Induced Pt–Co–Se Coordinated Sites with Highly Asymmetrical Electronic Distribution for Boosting Oxygenâ€Involving Electrocatalysis. Advanced Materials, 2019, 31, e1805581.	21.0	168
42	High Power Density Electrochemical Thermocells for Inexpensively Harvesting Lowâ€Grade Thermal Energy. Advanced Materials, 2017, 29, 1605652.	21.0	166
43	Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting. Energy and Environmental Science, 2021, 14, 6428-6440.	30.8	164
44	One-pot synthesis of porous 1T-phase MoS2 integrated with single-atom Cu doping for enhancing electrocatalytic hydrogen evolution reaction. Applied Catalysis B: Environmental, 2019, 251, 87-93.	20.2	160
45	Nanodroplets for Stretchable Superconducting Circuits. Advanced Functional Materials, 2016, 26, 8111-8118.	14.9	158
46	Fabrication of Free-Standing Hierarchical Carbon Nanofiber/Graphene Oxide/Polyaniline Films for Supercapacitors. ACS Applied Materials & Interfaces, 2014, 6, 200-209.	8.0	154
47	In-situ phase transition of WO3 boosting electron and hydrogen transfer for enhancing hydrogen evolution on Pt. Nano Energy, 2020, 71, 104653.	16.0	149
48	Development of Graphene Oxide/Polyaniline Inks for High Performance Flexible Microsupercapacitors via Extrusion Printing. Advanced Functional Materials, 2018, 28, 1706592.	14.9	144
49	A Co(OH)2â^'graphene nanosheets composite as a high performance anode material for rechargeable lithium batteries. Electrochemistry Communications, 2010, 12, 570-573.	4.7	142
50	Activating Titania for Efficient Electrocatalysis by Vacancy Engineering. ACS Catalysis, 2018, 8, 4288-4293.	11.2	141
51	The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems. Energy and Environmental Science, 2013, 6, 1291.	30.8	132
52	Facile Synthesis of Highly Efficient One-Dimensional Plasmonic Photocatalysts through Ag@Cu ₂ O Core–Shell Heteronanowires. ACS Applied Materials & Interfaces, 2014, 6, 15716-15725.	8.0	127
53	Defect electrocatalytic mechanism: concept, topological structure and perspective. Materials Chemistry Frontiers, 2018, 2, 1250-1268.	5.9	119
54	Nano-Carbon Electrodes for Thermal Energy Harvesting. Journal of Nanoscience and Nanotechnology, 2015, 15, 1-14.	0.9	118

#	Article	IF	CITATIONS
55	Electrochemical nonenzymatic sensor based on CoO decorated reduced graphene oxide for the simultaneous determination of carbofuran and carbaryl in fruits and vegetables. Food Chemistry, 2014, 151, 191-197.	8.2	117
56	PdNi Hollow Nanoparticles for Improved Electrocatalytic Oxygen Reduction in Alkaline Environments. ACS Applied Materials & Interfaces, 2013, 5, 12708-12715.	8.0	108
57	Carbon nanotube network modified carbon fibre paper for Li-ion batteries. Energy and Environmental Science, 2009, 2, 393.	30.8	106
58	Microwave-assisted synthesis of Pt/CNT nanocomposite electrocatalysts for PEM fuel cells. Nanoscale, 2010, 2, 282-286.	5.6	103
59	Recent Advances in 3D Graphene Architectures and Their Composites for Energy Storage Applications. Small, 2019, 15, e1803858.	10.0	99
60	Phosphorusâ€Based Materials as the Anode for Sodiumâ€ion Batteries. Small Methods, 2017, 1, 1700216.	8.6	98
61	Selfâ€Assembled 3D Foamâ€Like NiCo ₂ O ₄ as Efficient Catalyst for Lithium Oxygen Batteries. Small, 2016, 12, 602-611.	10.0	97
62	Advanced Wearable Thermocells for Body Heat Harvesting. Advanced Energy Materials, 2020, 10, 2002539.	19.5	97
63	A Repeated Halving Approach to Fabricate Ultrathin Singleâ€Walled Carbon Nanotube Films for Transparent Supercapacitors. Small, 2013, 9, 518-524.	10.0	96
64	Conducting polymer coated neural recording electrodes. Journal of Neural Engineering, 2013, 10, 016004.	3.5	95
65	Co3O4 nanorods decorated reduced graphene oxide composite for oxygen reduction reaction in alkaline electrolyte. Electrochemistry Communications, 2013, 34, 299-303.	4.7	90
66	Exfoliation of amorphous phthalocyanine conjugated polymers into ultrathin nanosheets for highly efficient oxygen reduction. Journal of Materials Chemistry A, 2019, 7, 3112-3119.	10.3	87
67	Paper-like free-standing polypyrrole and polypyrrole–LiFePO4 composite films for flexible and bendable rechargeable battery. Electrochemistry Communications, 2008, 10, 1781-1784.	4.7	86
68	A novel bath lily-like graphene sheet-wrapped nano-Si composite as a high performance anode material for Li-ion batteries. RSC Advances, 2011, 1, 958.	3.6	85
69	Manganosite–microwave exfoliated graphene oxide composites for asymmetric supercapacitor device applications. Electrochimica Acta, 2013, 101, 99-108.	5.2	83
70	Composite Photocatalysts Containing BiVO4 for Degradation of Cationic Dyes. Scientific Reports, 2017, 7, 8929.	3.3	82
71	Hexagonal Boron Nitride as a Multifunctional Support for Engineering Efficient Electrocatalysts toward the Oxygen Reduction Reaction. Nano Letters, 2020, 20, 6807-6814.	9.1	82
72	Mesoporous hollow PtCu nanoparticles for electrocatalytic oxygen reduction reaction. Journal of Materials Chemistry A, 2013, 1, 2391.	10.3	81

#	Article	IF	CITATIONS
73	Three-Dimensional Porous Cobalt Phosphide Nanocubes Encapsulated in a Graphene Aerogel as an Advanced Anode with High Coulombic Efficiency for High-Energy Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 5373-5379.	8.0	78
74	Carbon Nanotube Nanoweb–Bioelectrode for Highly Selective Dopamine Sensing. ACS Applied Materials & Interfaces, 2012, 4, 44-48.	8.0	74
75	Recent Development of Fabricating Flexible Microâ€&upercapacitors for Wearable Devices. Advanced Materials Technologies, 2018, 3, 1800028.	5.8	69
76	Body Heat Powers Future Electronic Skins. Joule, 2019, 3, 1399-1403.	24.0	67
77	Photocatalytic Reduction on Bismuth-Based <i>p</i> -Block Semiconductors. ACS Sustainable Chemistry and Engineering, 2018, 6, 15936-15953.	6.7	62
78	Achieving Highâ€Performance Metal Phosphide Anode for Potassium Ion Batteries via Concentrated Electrolyte Chemistry. Advanced Energy Materials, 2021, 11, 2003346.	19.5	62
79	Nanoelectrodes: energy conversion and storage. Materials Today, 2009, 12, 20-27.	14.2	61
80	Reduced graphene oxide–cuprous oxide composite via facial deposition for photocatalytic dye-degradation. Journal of Alloys and Compounds, 2013, 568, 26-35.	5.5	61
81	Microstructure and magnetorheological properties of the thermoplastic magnetorheological elastomer composites containing modified carbonyl iron particles and poly(styrene-b-ethylene-ethylenepropylene-b-styrene) matrix. Smart Materials and Structures, 2012, 21, 115028.	3.5	58
82	One-pot synthesis of α-Fe2O3 nanoparticles-decorated reduced graphene oxide for efficient nonenzymatic H2O2 biosensor. Sensors and Actuators B: Chemical, 2014, 190, 645-650.	7.8	58
83	MWNT/C/Mg1.03Mn0.97SiO4 hierarchical nanostructure for superior reversible magnesium ion storage. Electrochemistry Communications, 2011, 13, 1143-1146.	4.7	56
84	A solvothermal strategy: one-step in situ synthesis of self-assembled 3D graphene-based composites with enhanced lithium storage capacity. Journal of Materials Chemistry A, 2014, 2, 9200-9207.	10.3	56
85	Carbon nanotube-induced phase and stability engineering: a strained cobalt-doped WSe ₂ /MWNT heterostructure for enhanced hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 4793-4800.	10.3	56
86	Novel carbon materials for thermal energy harvesting. Journal of Thermal Analysis and Calorimetry, 2012, 109, 1229-1235.	3.6	54
87	Substituted ferrocenes and iodine as synergistic thermoelectrochemical heat harvesting redox couples in ionic liquids. Chemical Communications, 2016, 52, 745-748.	4.1	52
88	Integrated Highâ€Efficiency Pt/Carbon Nanotube Arrays for PEM Fuel Cells. Advanced Energy Materials, 2011, 1, 671-677.	19.5	51
89	Conducting polymer nanoparticles synthesized in an ionic liquid by chemical polymerisation. Synthetic Metals, 2006, 156, 979-983.	3.9	50
90	A 3D hierarchical porous Co ₃ O ₄ nanotube network as an efficient cathode for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2017, 5, 14673-14681.	10.3	50

JUN CHEN

#	Article	IF	CITATIONS
91	Thermochemistry and growth mechanism of SiC nanowires. Journal of Solid State Chemistry, 2017, 253, 282-286.	2.9	50
92	Potentially Wearable Thermoâ€Electrochemical Cells for Body Heat Harvesting: From Mechanism, Materials, Strategies to Applications. Advanced Science, 2021, 8, 2100669.	11.2	50
93	EPR characterisation of platinum nanoparticle functionalised carbon nanotube hybrid materials. Physical Chemistry Chemical Physics, 2010, 12, 4135.	2.8	49
94	Enhanced simultaneous detection of ractopamine and salbutamol – Via electrochemical-facial deposition of MnO 2 nanoflowers onto 3D RGO/Ni foam templates. Biosensors and Bioelectronics, 2016, 78, 259-266.	10.1	49
95	Facile Fabrication of Flexible Microsupercapacitor with High Energy Density. Advanced Materials Technologies, 2016, 1, 1600166.	5.8	48
96	Review of Electrolytes in Nonaqueous Lithium–Oxygen Batteries. Advanced Sustainable Systems, 2018, 2, 1700183.	5.3	46
97	Ambient controlled synthesis of advanced core–shell plasmonic Ag@ZnO photocatalysts. CrystEngComm, 2016, 18, 1713-1722.	2.6	45
98	Direct scattered growth of MWNT on Si for high performance anode material in Li-ion batteries. Chemical Communications, 2010, 46, 9149.	4.1	44
99	Gemini surfactant doped polypyrrole nanodispersions: an inkjet printable formulation. Journal of Materials Chemistry, 2011, 21, 1918-1924.	6.7	44
100	Impact of mechanical bending on the electrochemical performance of bendable lithium batteries with paper-like free-standing V2O5–polypyrrole cathodes. Journal of Materials Chemistry, 2012, 22, 11159.	6.7	44
101	Tailoring the wettability and mechanical properties of electrospun poly(l-lactic acid)-poly(glycerol) Tj ETQq1 1 2017, 508, 87-94.	0.784314 rgł 9.4	3T /Overlock 43
102	Fabrication of a Singleâ€Atom Platinum Catalyst for the Hydrogen Evolution Reaction: A New Protocol by Utilization of H _{<i>x</i>} MoO _{3â^'<i>x</i>} with Plasmon Resonance. ChemCatChem, 2018, 10, 946-950.	3.7	43
103	Tailoring lattice strain in ultra-fine high-entropy alloys for active and stable methanol oxidation. Science China Materials, 2021, 64, 2454-2466.	6.3	43
104	Three-dimensional porous silicon–MWNT heterostructure with superior lithium storage performance. Physical Chemistry Chemical Physics, 2011, 13, 20108.	2.8	42
105	One-pot green synthesis of Ag nanoparticles-decorated reduced graphene oxide for efficient nonenzymatic H2O2 biosensor. Materials Letters, 2013, 107, 311-314.	2.6	42
106	N-Doped Crumpled Graphene Derived from Vapor Phase Deposition of PPy on Graphene Aerogel as an Efficient Oxygen Reduction Reaction Electrocatalyst. ACS Applied Materials & Interfaces, 2015, 7, 7066-7072.	8.0	42
107	Recent Advances in Isolated Single-Atom Catalysts for Zinc Air Batteries: A Focus Review. Nanomaterials, 2019, 9, 1402.	4.1	42
108	Nano-Pt Modified Aligned Carbon Nanotube Arrays Are Efficient, Robust, High Surface Area Electrocatalysts. Chemistry of Materials, 2008, 20, 2603-2605.	6.7	41

#	Article	IF	CITATIONS
109	3D Bio-nanofibrous PPy/SIBS mats as platforms for cell culturing. Chemical Communications, 2008, , 3729.	4.1	41
110	Hybrid Graphene/Conducting Polymer Strip Sensors for Sensitive and Selective Electrochemical Detection of Serotonin. ACS Omega, 2019, 4, 22169-22177.	3.5	41
111	Ultrathin Fewâ€Layer GeP Nanosheets via Lithiationâ€Assisted Chemical Exfoliation and Their Application in Sodium Storage. Advanced Energy Materials, 2020, 10, 1903826.	19.5	41
112	Preparation of novel ultrafine fibers based on DNA and poly(ethylene oxide) by electrospinning from aqueous solutions. Reactive and Functional Polymers, 2007, 67, 461-467.	4.1	39
113	Guidance of neurite outgrowth on aligned electrospun polypyrrole/poly(styreneâ€Î²â€isobutyleneâ€Î²â€styrene) fiber platforms. Journal of Biomedical Materials Research - Part A, 2010, 94A, 1004-1011.	4.0	39
114	A Porphyrinâ€Doped Polymer Catalyzes Selective, Lightâ€Assisted Water Oxidation in Seawater. Angewandte Chemie - International Edition, 2012, 51, 1907-1910.	13.8	39
115	A readily-prepared, convergent, oxygen reduction electrocatalyst. Chemical Communications, 2007, , 3353.	4.1	38
116	Novel ACNT arrays based MEA structure-nano-Pt loaded ACNT/Nafion/ACNT for fuel cell applications. Chemical Communications, 2010, 46, 4824.	4.1	38
117	Biocompatibility of Immobilized Aligned Carbon Nanotubes. Small, 2011, 7, 1035-1042.	10.0	38
118	Ambient synthesis of a multifunctional 1D/2D hierarchical Ag–Ag ₂ S nanowire/nanosheet heterostructure with diverse applications. CrystEngComm, 2016, 18, 930-937.	2.6	38
119	Fe/Coâ€based Bimetallic MOFâ€derived Co ₃ Fe ₇ @NCNTFs Bifunctional Electrocatalyst for Highâ€Efficiency Overall Water Splitting. Chemistry - an Asian Journal, 2020, 15, 1728-1735.	3.3	38
120	Probe Sensor Using Nanostructured Multi-Walled Carbon Nanotube Yarn for Selective and Sensitive Detection of Dopamine. Sensors, 2017, 17, 884.	3.8	37
121	Redox-active conducting polymers incorporating ferrocenes. Preparation, characterization and bio-sensing properties of ferrocenylpropyl and -butyl polypyrroles. Electrochimica Acta, 2002, 47, 4227-4238.	5.2	36
122	Amorphous MoO _{3â^'x} nanosheets prepared by the reduction of crystalline MoO ₃ by Mo metal for LSPR and photothermal conversion. Chemical Communications, 2019, 55, 12527-12530.	4.1	36
123	The citrate-mediated shape evolution of transforming photomorphic silver nanoparticles. Chemical Communications, 2010, 46, 7807.	4.1	34
124	Sensitive and selective dopamine determination in human serum with inkjet printed Nafion/MWCNT chips. Electrochemistry Communications, 2013, 37, 32-35.	4.7	34
125	Efficient Photocatalytic Degradation of Malachite Green in Seawater by the Hybrid of Zinc-Oxide Nanorods Grown on Three-Dimensional (3D) Reduced Graphene Oxide(RGO)/Ni Foam. Materials, 2018, 11, 1004.	2.9	34
126	Phase-controlled microwave synthesis of pure monoclinic BiVO4 nanoparticles for photocatalytic dye degradation. Applied Materials Today, 2015, 1, 67-73.	4.3	33

#	Article	IF	CITATIONS
127	Bioâ€Interface of Conducting Polymerâ€Based Materials for Neuroregeneration. Advanced Materials Interfaces, 2015, 2, 1500059.	3.7	33
128	Nanofibrous Co ₃ O ₄ /PPy Hybrid with Synergistic Effect as Bifunctional Catalyst for Lithiumâ€Oxygen Batteries. Advanced Materials Interfaces, 2016, 3, 1600030.	3.7	33
129	Probing the Active Sites of Carbonâ€Encapsulated Cobalt Nanoparticles for Oxygen Reduction. Small Methods, 2019, 3, 1800439.	8.6	33
130	Facile Fabrication of Pt Nanoparticles on 1-Pyrenamine Functionalized Graphene Nanosheets for Methanol Electrooxidation. ACS Sustainable Chemistry and Engineering, 2013, 1, 527-533.	6.7	32
131	Nanostructured aligned CNT platforms enhance the controlled release of a neurotrophic protein from polypyrrole. Nanoscale, 2010, 2, 499.	5.6	30
132	Elastic Fiber Supercapacitors for Wearable Energy Storage. Macromolecular Rapid Communications, 2018, 39, e1800103.	3.9	30
133	The significance of supporting electrolyte on poly (vinyl alcohol)–iron(II)/iron(III) solid-state electrolytes for wearable thermo-electrochemical cells. Electrochemistry Communications, 2021, 124, 106938.	4.7	30
134	Bio-nanowebs Based on Poly(styrene-β-isobutylene-β-styrene) (SIBS) Containing Single-Wall Carbon Nanotubes. Chemistry of Materials, 2007, 19, 2721-2723.	6.7	29
135	Uniform Polypyrrole Layer-Coated Sulfur/Graphene Aerogel via the Vapor-Phase Deposition Technique as the Cathode Material for Li–S Batteries. ACS Applied Materials & Interfaces, 2020, 12, 5958-5967.	8.0	29
136	Supercritical CO ₂ -constructed intralayer [Bi ₂ O ₂] ²⁺ structural distortion for enhanced CO ₂ electroreduction. Journal of Materials Chemistry A, 2020, 8, 13320-13327.	10.3	29
137	â€~Stuffed' conducting polymers. Polymer, 2005, 46, 4664-4669.	3.8	28
138	Flexible Antibacterial Film Deposited with Polythiophene–Porphyrin Composite. Advanced Healthcare Materials, 2013, 2, 1582-1585.	7.6	28
139	A readily-prepared electrocatalytic coating that is more active than platinum for hydrogen generation in 1 M strong acid. Chemical Communications, 2004, , 308-309.	4.1	27
140	A Simple Means to Immobilize Enzyme into Conducting Polymers via Entrapment. Electrochemical and Solid-State Letters, 2006, 9, H68.	2.2	26
141	Metal porphyrin intercalated reduced graphene oxide nanocomposite utilized for electrocatalytic oxygen reduction. Green Energy and Environment, 2017, 2, 285-293.	8.7	26
142	High-efficiency electrocatalyst for N ₂ conversion to NH ₃ based on Au nanoparticles loaded on defective WO _{3â^'x} . Chemical Communications, 2019, 55, 13307-13310.	4.1	26
143	Improved charge injection of edge aligned MoS ₂ /MoO ₂ hybrid nanosheets for highly robust and efficient electrocatalysis of H ₂ production. Nanoscale, 2020, 12, 5003-5013.	5.6	26
144	Electrocatalytic Reduction of Carbon Dioxide by Cobalt-Phthalocyanine-Incorporated Polypyrrole. Electrochemical and Solid-State Letters, 2009, 12, E17.	2.2	25

#	Article	IF	CITATIONS
145	Nanofiber Mats from DNA, SWNTs, and Poly(ethylene oxide) and Their Application in Glucose Biosensors. Journal of the Electrochemical Society, 2008, 155, K100.	2.9	24
146	Redox-active conducting polymers incorporating ferrocenes. Electrochimica Acta, 2004, 49, 691-702.	5.2	23
147	Synthesis of Chiral Polyaniline Films via Chemical Vapor Phase Polymerization. Electrochemical and Solid-State Letters, 2006, 9, C9.	2.2	23
148	Polypyrrole/Co-tetraphenylporphyrin modified carbon fibre paper as a fuel cell electrocatalyst of oxygen reduction. Electrochemistry Communications, 2008, 10, 519-522.	4.7	23
149	Heterostructured Mo2C–MoO2 as highly efficient catalyst for rechargeable Li–O2 battery. Journal of Power Sources, 2020, 470, 228317.	7.8	23
150	Electrochemical polymerization of pyrrole in BMIMPF6 ionic liquid and its electrochemical response to dopamine in the presence of ascorbic acid. Synthetic Metals, 2009, 159, 1542-1545.	3.9	22
151	A novel enzymatic bioelectrode system combining a redox hydrogel with a carbon NanoWeb. Chemical Communications, 2011, 47, 8886.	4.1	22
152	Towards Hydrogen Energy: Progress on Catalysts for Water Splitting. Australian Journal of Chemistry, 2012, 65, 577.	0.9	22
153	A light-assisted, polymeric water oxidation catalyst that selectively oxidizes seawater with a low onset potential. Chemical Science, 2013, 4, 2797.	7.4	22
154	Controlled hydrogenation into defective interlayer bismuth oxychloride via vacancy engineering. Communications Chemistry, 2020, 3, .	4.5	22
155	Thermogalvanic and Thermocapacitive Behavior of Superabsorbent Hydrogels for Combined Low-Temperature Thermal Energy Conversion and Harvesting. ACS Applied Energy Materials, 2021, 4, 11204-11214.	5.1	21
156	Preparation of platinum inverse opals using self-assembled templates and their application in methanol oxidation. Materials Letters, 2007, 61, 2887-2890.	2.6	20
157	Homogeneous Catalysts with a Mechanical ("Machineâ€likeâ€) Action. Chemistry - A European Journal, 2009, 15, 4746-4759.	3.3	20
158	Photoelectrochemical Solar Cells based on Polyterthiophenes Containing Porphyrins using Ionic Liquid Electrolyte. Electrochemical and Solid-State Letters, 2005, 8, A528.	2.2	19
159	Advanced microwave-assisted production of hybrid electrodes for energy applications. Energy and Environmental Science, 2010, 3, 1979.	30.8	19
160	Core-Shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction. Frontiers in Chemistry, 2016, 4, 36.	3.6	18
161	Hierarchical Nafion enhanced carbon aerogels for sensing applications. Nanoscale, 2016, 8, 3416-3424.	5.6	17
162	Fabrication of graphene foam supported carbon nanotube/polyaniline hybrids for high-performance supercapacitor applications. 2D Materials, 2014, 1, 034002.	4.4	16

#	Article	IF	CITATIONS
163	Electroactive biocompatible materials for nerve cell stimulation. Materials Research Express, 2015, 2, 042001.	1.6	16
164	Bipolar electroactive conducting polymers for wireless cell stimulation. Applied Materials Today, 2020, 21, 100804.	4.3	16
165	Synergistic Voltaglue Adhesive Mechanisms with Alternating Electric Fields. Chemistry of Materials, 2020, 32, 2440-2449.	6.7	16
166	Synthesis and characterization of Ag/PPy composite films via enhanced redox reaction of metal ions. Applied Surface Science, 2009, 256, 235-238.	6.1	15
167	Wearable Corneal Biosensors Fabricated from PEDOT Functionalized Sulfurâ€Doped Graphene for Use in the Early Detection of Myopia. Advanced Materials Technologies, 2020, 5, 2000682.	5.8	15
168	Localized growth of Pt on Pd as a bimetallic electrocatalyst with enhanced catalytic activity and durability for proton exchange membrane fuel cell. Electrochemistry Communications, 2013, 34, 73-76.	4.7	14
169	Performance enhancement of single-walled nanotube–microwave exfoliated graphene oxide composite electrodes using a stacked electrode configuration. Journal of Materials Chemistry A, 2014, 2, 14835-14843.	10.3	14
170	N-doped pierced graphene microparticles as a highly active electrocatalyst for Li-air batteries. 2D Materials, 2015, 2, 024002.	4.4	14
171	Singleâ€Walled Carbon Nanotube/Trititanate Nanotube Composite Fibers. Advanced Engineering Materials, 2009, 11, B55.	3.5	13
172	One dimensional hierarchical nanostructures composed of CdS nanosheets/nanoparticles and Ag nanowires with promoted photocatalytic performance. Inorganic Chemistry Frontiers, 2018, 5, 903-915.	6.0	13
173	Microwave Decoration of Pt Nanoparticles on Entangled 3D Carbon Nanotube Architectures as PEM Fuel Cell Cathode. ChemSusChem, 2012, 5, 1233-1240.	6.8	12
174	Scalable Solid-Template Reduction for Designed Reduced Graphene Oxide Architectures. ACS Applied Materials & Interfaces, 2013, 5, 7676-7681.	8.0	12
175	Carbon Nanotubes for Energy Applications. , 0, , .		12
176	Hierarchically porous carbon–zirconium carbide spheres as potentially reusable transmutation targets. Microporous and Mesoporous Materials, 2015, 212, 100-109.	4.4	12
177	Metal-oxygen bonds: Stabilizing the intermediate species towards practical Li-air batteries. Electrochimica Acta, 2018, 259, 313-320.	5.2	12
178	Available Active Sites on εâ€Fe ₃ N Nanoparticles Synthesized by a Facile Route for Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2021, 8, 2100070.	3.7	12
179	Hexagonalâ€Shaped Tin Glycolate Particles: A Preliminary Study of Their Suitability as Liâ€Ion Insertion Electrodes. Chemistry - an Asian Journal, 2008, 3, 854-861.	3.3	11
180	Electrochemical investigation of carbon nanotube nanoweb architecture in biological media. Electrochemistry Communications, 2010, 12, 1471-1474.	4.7	11

#	Article	IF	CITATIONS
181	Activation of urchin-like Ni-doped W18O49/NF by electrochemical tuning for efficient water splitting. Journal of Energy Chemistry, 2021, 63, 642-650.	12.9	11
182	Functional Electro-materials Based on Ferricyanide Redox-active Ionic Liquids. Electrochimica Acta, 2017, 245, 934-940.	5.2	10
183	Data on the bipolar electroactive conducting polymers for wireless cell stimulation. Data in Brief, 2020, 33, 106406.	1.0	10
184	Highly flexible reduced graphene oxide@polypyrrole–polyethylene glycol foam for supercapacitors. RSC Advances, 2020, 10, 29090-29099.	3.6	10
185	Superfast Selfâ€Healing and Photothermal Active Hydrogel with Nondefective Graphene as Effective Additive. Macromolecular Materials and Engineering, 2020, 305, 2000172.	3.6	10
186	Unzipping chemical bonds of non-layered bulk structures to form ultrathin nanocrystals. Matter, 2021, 4, 955-968.	10.0	10
187	Wireless bipolar electrode-based textile electrofluidics: towards novel micro-total-analysis systems. Lab on A Chip, 2021, 21, 3979-3990.	6.0	10
188	Preparation of Low Loading Pt/C Catalyst by Carbon Xerogel Method for Ethanol Electrooxidation. Catalysis Letters, 2008, 122, 111-114.	2.6	9
189	Plasma functionalisation of few-layer graphenes and carbon nanotubes for graphene microsupercapacitors. Electrochimica Acta, 2019, 317, 348-357.	5.2	9
190	Efficient photoelectrochemical sensor of Cu2+ based on ZnO-graphene nanocomposite sensitized with hexagonal CdS by calcination method. Journal of Electroanalytical Chemistry, 2021, 893, 115330.	3.8	9
191	Structures, and far-infrared and Raman spectra of GdMn1â^'xCoxO3 (x=0–1.0). Thin Solid Films, 2010, 518, e24-e27.	1.8	8
192	All-polymer wearable thermoelectrochemical cells harvesting body heat. IScience, 2021, 24, 103466.	4.1	8
193	Electrocatalyst Derived from NiCu–MOF Arrays on Graphene Oxide Modified Carbon Cloth for Water Splitting. Inorganics, 2022, 10, 53.	2.7	8
194	Charge storage in carbon nanotube–TiO2 hybrid nanoparticles. Synthetic Metals, 2012, 162, 650-654.	3.9	6
195	The Synergistic Effect of Heteroatom Doping and Vacancy on The Reduction of CO ₂ by Photocatalysts. ChemNanoMat, 2021, 7, 894-901.	2.8	6
196	Direct Growth of Carbon Nanotubes onto Titanium Dioxide Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 955-959.	0.9	5
197	Flexible Supercapacitors – Development of Bendable Carbon Architectures. ACS Symposium Series, 2013, , 101-141.	0.5	5
198	Porous Zr2SC-carbon composite microspheres: Possible radiation tolerant sorbents and transmutation hosts for technetium-99. Microporous and Mesoporous Materials, 2018, 259, 67-78.	4.4	5

#	Article	IF	CITATIONS
199	Hydrogen generation using PPy-FMS modified PVDF membrane and other substrates. Synthetic Metals, 2005, 154, 69-72.	3.9	4
200	Gyroid nanoporous scaffold for conductive polymers. Polymer Chemistry, 2011, 2, 553-555.	3.9	4
201	Nanostructuring Electrode Surfaces and Hydrogels for Enhanced Thermocapacitance. ACS Applied Nano Materials, 2022, 5, 438-445.	5.0	4
202	Enhanced wireless cell stimulation using soft and improved bipolar electroactive conducting polymer templates. Applied Materials Today, 2022, 27, 101481.	4.3	4
203	Free-standing sulfonated graphene-polypyrrole-polyethylene glycol foam for highly flexible supercapacitors. Polymer, 2022, 255, 125168.	3.8	4
204	An Efficient Bifunctional Electrocatalyst of Methanol Oxidation. Organometallics, 2007, 26, 4860-4862.	2.3	3
205	Study on the Controllable Scale-Up Growth of Vertically-Aligned Carbon Nanotube Arrays. Journal of Nanoscience and Nanotechnology, 2012, 12, 2722-2732.	0.9	3
206	Studies of poly(3,4-ethylenedioxythiophene) (PEDOT) films containing cationic Mn porphyrins. A loading-dependent demetalation of Mn(III)TPP in PEDOT (Mn(III)TPP=5,10,15,20-tetraphenylporphyrinato) Tj ET	[.] Qq @ &0 r٤	gBT\$Overlock
207	Inkjetâ€Printed Planar Biochips for Interfacial Detection of Biomoleculars. Advanced Materials Interfaces, 2017, 4, 1700588.	3.7	3
208	Porous ZrC-carbon microspheres as potential insoluble target matrices for production of 188W/188Re. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318, 835-847.	1.5	3
209	Effect of Doping Different Cu Valence States in HfO2 on Resistive Switching Properties of RRAM. Inorganics, 2022, 10, 85.	2.7	3
210	Characterisation of titanium dioxide-single walled carbon nanotubes composite fibres prepared by the wet spinning technique. , 2008, , .		2
211	Foam-like, microstructural SnO ₂ –carbon composite thin films synthesized via a polyol-assisted thermal decomposition method. Dalton Transactions, 2009, , 723-729.	3.3	2
212	Photocatalytic oxygen evolution from non-potable water by a bioinspired molecular water oxidation catalyst. Journal of Molecular Catalysis A, 2011, , .	4.8	2
213	Exploring Materials in An Open Lab. , 0, 1, .		2
214	Using a principle of heterogeneous catalysis to achieve enzyme-like molecular catalysis. Journal of Inorganic Biochemistry, 2003, 96, 153.	3.5	1
215	Quinone Redox-active Ionic Liquids. Journal of the Mexican Chemical Society, 2017, 59, .	0.6	1
216	Towards Novel Entangled Carbon Nanotube Composite Electrodes. , 2008, , .		0