
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8243141/publications.pdf Version: 2024-02-01

ΤΠΛΝΛ ΡΛΙΗ

#	Article	IF	CITATIONS
1	Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2Using EPR. Journal of Physical Chemistry B, 2003, 107, 4545-4549.	1.2	1,837
2	Surface Restructuring of Nanoparticles:Â An Efficient Route for Ligandâ^'Metal Oxide Crosstalk. Journal of Physical Chemistry B, 2002, 106, 10543-10552.	1.2	661
3	Amorphous TiO ₂ Nanotube Anode for Rechargeable Sodium Ion Batteries. Journal of Physical Chemistry Letters, 2011, 2, 2560-2565.	2.1	625
4	Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nature Materials, 2010, 9, 165-171.	13.3	507
5	Role of Water and Carbonates in Photocatalytic Transformation of CO ₂ to CH ₄ on Titania. Journal of the American Chemical Society, 2011, 133, 3964-3971.	6.6	416
6	SERS of Semiconducting Nanoparticles (TiO ₂ Hybrid Composites). Journal of the American Chemical Society, 2009, 131, 6040-6041.	6.6	405
7	Recombination Pathways in the Degussa P25 Formulation of TiO2:Â Surface versus Lattice Mechanisms. Journal of Physical Chemistry B, 2005, 109, 977-980.	1.2	371
8	Hollow Iron Oxide Nanoparticles for Application in Lithium Ion Batteries. Nano Letters, 2012, 12, 2429-2435.	4.5	369
9	Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nature Energy, 2019, 4, 957-968.	19.8	349
10	Band Gap Narrowing of Titanium Oxide Semiconductors by Noncompensated Anion-Cation Codoping for Enhanced Visible-Light Photoactivity. Physical Review Letters, 2009, 103, 226401.	2.9	347
11	Role of Surface/Interfacial Cu ²⁺ Sites in the Photocatalytic Activity of Coupled CuOâ^'TiO ₂ Nanocomposites. Journal of Physical Chemistry C, 2008, 112, 19040-19044.	1.5	344
12	Improving Optical and Charge Separation Properties of Nanocrystalline TiO2 by Surface Modification with Vitamin C. Journal of Physical Chemistry B, 1999, 103, 3515-3519.	1.2	332
13	Nanostructured Bilayered Vanadium Oxide Electrodes for Rechargeable Sodium-Ion Batteries. ACS Nano, 2012, 6, 530-538.	7.3	313
14	XAFS Studies of Surface Structures of TiO2 Nanoparticles and Photocatalytic Reduction of Metal Ions. Journal of Physical Chemistry B, 1997, 101, 10688-10697.	1.2	310
15	Biology of TiO2–oligonucleotide nanocomposites. Nature Materials, 2003, 2, 343-346.	13.3	286
16	A High-Performance Nanobio Photocatalyst for Targeted Brain Cancer Therapy. Nano Letters, 2009, 9, 3337-3342.	4.5	268
17	Fe2O3 Nanoparticle Structures Investigated by X-ray Absorption Near-Edge Structure, Surface Modifications, and Model Calculations. Journal of Physical Chemistry B, 2002, 106, 8539-8546.	1.2	255
18	Titanium Dioxide in the Service of the Biomedical Revolution. Chemical Reviews, 2014, 114, 10177-10216.	23.0	254

#	Article	IF	CITATIONS
19	Probing reaction mechanisms in mixed phase TiO2 by EPR. Journal of Electron Spectroscopy and Related Phenomena, 2006, 150, 155-163.	0.8	230
20	Surface Modification of Small Particle TiO2Colloids with Cysteine for Enhanced Photochemical Reduction: An EPR Studyâ€. The Journal of Physical Chemistry, 1996, 100, 4538-4545.	2.9	227
21	Computational Studies of Catechol and Water Interactions with Titanium Oxide Nanoparticles. Journal of Physical Chemistry B, 2003, 107, 11419-11427.	1.2	208
22	Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications. Journal of Catalysis, 2008, 253, 105-110.	3.1	203
23	Surface Modification of TiO2Nanoparticles For Photochemical Reduction of Nitrobenzene. Environmental Science & Technology, 2000, 34, 4797-4803.	4.6	193
24	In Situ Visualization of Self-Assembly of Charged Gold Nanoparticles. Journal of the American Chemical Society, 2013, 135, 3764-3767.	6.6	183
25	Nanostructured Layered Cathode for Rechargeable Mg-Ion Batteries. ACS Nano, 2015, 9, 8194-8205.	7.3	181
26	Enhanced Photocatalytic Degradation of Dye Pollutants under Visible Irradiation on Al(III)-Modified TiO ₂ : Structure, Interaction, and Interfacial Electron Transfer. Environmental Science & Technology, 2008, 42, 308-314.	4.6	176
27	Facile Oxidative Conversion of TiH ₂ to High-Concentration Ti ³⁺ -Self-Doped Rutile TiO ₂ with Visible-Light Photoactivity. Inorganic Chemistry, 2013, 52, 3884-3890.	1.9	171
28	The Important Role of Tetrahedral Ti ⁴⁺ Sites in the Phase Transformation and Photocatalytic Activity of TiO ₂ Nanocomposites. Journal of the American Chemical Society, 2008, 130, 5402-5403.	6.6	166
29	Charge Transfer Across the Nanocrystalline-DNA Interface:Â Probing DNA Recognition. Nano Letters, 2004, 4, 1017-1023.	4.5	164
30	Dynamics of Localized Charges in Dopamine-Modified TiO ₂ and their Effect on the Formation of Reactive Oxygen Species. Journal of the American Chemical Society, 2009, 131, 2893-2899.	6.6	158
31	A Bioinspired Construct That Mimics the Proton Coupled Electron Transfer between P680 ^{•+} and the Tyr _Z -His190 Pair of Photosystem II. Journal of the American Chemical Society, 2008, 130, 10466-10467.	6.6	156
32	A bioinspired redox relay that mimics radical interactions of the Tyr–His pairs of photosystem II. Nature Chemistry, 2014, 6, 423-428.	6.6	133
33	Assembly and Charge Transfer in Hybrid TiO2Architectures Using Biotinâ^'Avidin as a Connector. Journal of the American Chemical Society, 2005, 127, 1344-1345.	6.6	132
34	Shaping Nanometer-Scale Architecture Through Surface Chemistry. Advanced Materials, 2005, 17, 965-971.	11.1	125
35	Radiolytically Induced Formation and Optical Absorption Spectra of Colloidal Silver Nanoparticles in Supercritical Ethane,. Journal of Physical Chemistry B, 2001, 105, 954-959.	1.2	122
36	Nanostructured TiO ₂ /Polypyrrole for Visible Light Photocatalysis. Journal of Physical Chemistry C, 2013, 117, 15540-15544.	1.5	121

#	Article	IF	CITATIONS
37	Effect of Calcination Temperature on the Photocatalytic Reduction and Oxidation Processes of Hydrothermally Synthesized Titania Nanotubes. Journal of Physical Chemistry C, 2010, 114, 12994-13002.	1.5	114
38	X-ray absorption reveals surface structure of titanium dioxide nanoparticles. Journal of Synchrotron Radiation, 1999, 6, 445-447.	1.0	112
39	Effect of Size and Shape of Nanocrystalline TiO ₂ on Photogenerated Charges. An EPR Study. Journal of Physical Chemistry C, 2007, 111, 14597-14601.	1.5	112
40	Self-Improving Anode for Lithium-Ion Batteries Based on Amorphous to Cubic Phase Transition in TiO ₂ Nanotubes. Journal of Physical Chemistry C, 2012, 116, 3181-3187.	1.5	110
41	Surface States of Titanium Dioxide Nanoparticles Modified with Enediol Ligands. Journal of Physical Chemistry B, 2006, 110, 680-686.	1.2	106
42	Improved Hybrid Solar Cells via in situ UV Polymerization. Small, 2009, 5, 1776-1783.	5.2	105
43	Intercalation of Sodium Ions into Hollow Iron Oxide Nanoparticles. Chemistry of Materials, 2013, 25, 245-252.	3.2	104
44	Utilizing Chemical Raman Enhancement: A Route for Metal Oxide Support-Based Biodetection. Journal of Physical Chemistry C, 2011, 115, 620-630.	1.5	100
45	Photocatalytic reduction of 4-nitrophenol with arginine-modified titanium dioxide nanoparticles. Applied Catalysis B: Environmental, 2007, 74, 103-110.	10.8	91
46	Room Temperature Synthesis of Ti–MCM-48 and Ti–MCM-41 Mesoporous Materials and Their Performance on Photocatalytic Splitting of Water. Journal of Physical Chemistry C, 2012, 116, 1605-1613.	1.5	90
47	Revealing the Nature of Trapping Sites in Nanocrystalline Titanium Dioxide by Selective Surface Modificationâ€. Journal of Physical Chemistry B, 2003, 107, 7368-7375.	1.2	88
48	Cadmium removal from water using thiolactic acid-modified titanium dioxide nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 393-397.	2.0	87
49	Surface-Enhanced Raman Scattering on Semiconducting Oxide Nanoparticles: Oxide Nature, Size, Solvent, and pH Effects. Journal of Physical Chemistry C, 2011, 115, 8994-9004.	1.5	79
50	Size quantization of colloidal semiconductor particles in silicate glasses. Chemical Physics Letters, 1988, 143, 305-308.	1.2	77
51	Synthesis and Characterization of Wurtzite ZnTe Nanorods with Controllable Aspect Ratios. Journal of the American Chemical Society, 2011, 133, 15324-15327.	6.6	74
52	Iron(III)-oxo Centers on TiO ₂ for Visible-Light Photocatalysis. Chemistry of Materials, 2010, 22, 409-413.	3.2	73
53	High-Performance Bioassisted Nanophotocatalyst for Hydrogen Production. Nano Letters, 2013, 13, 3365-3371.	4.5	72
54	Dynamics of Interfacial Charge Transfer to Formic Acid, Formaldehyde, and Methanol on the Surface of TiO2Nanoparticles and Its Role in Methane Production. Journal of Physical Chemistry C, 2012, 116, 878-885.	1.5	68

#	Article	IF	CITATIONS
55	Density functional study of the TiO2–dopamine complex. Chemical Physics Letters, 2005, 406, 306-311.	1.2	67
56	Selective Photocatalytic Decomposition of Nitrobenzene Using Surface Modified TiO ₂ Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 8311-8318.	1.5	62
57	Comparison of Structural Behavior of Nanocrystals in Randomly Packed Films and Long-Range Ordered Superlattices by Time-Resolved Small Angle X-ray Scattering. Journal of the American Chemical Society, 2009, 131, 16386-16388.	6.6	61
58	Visualizing Redox Dynamics of a Single Ag/AgCl Heterogeneous Nanocatalyst at Atomic Resolution. ACS Nano, 2016, 10, 3738-3746.	7.3	61
59	Evolution of Self-Assembled ZnTe Magic-Sized Nanoclusters. Journal of the American Chemical Society, 2015, 137, 742-749.	6.6	58
60	Photoinduced Electron Transfer Pathways in Hydrogen-Evolving Reduced Graphene Oxide-Boosted Hybrid Nano-Bio Catalyst. ACS Nano, 2014, 8, 7995-8002.	7.3	55
61	Direct Evidence of Chelated Geometry of Catechol on TiO ₂ by a Combined Solid-State NMR and DFT Study. Journal of Physical Chemistry C, 2016, 120, 23625-23630.	1.5	55
62	Probing the Nature of Bandgap States in Hydrogen-Treated TiO ₂ Nanowires. Journal of Physical Chemistry C, 2013, 117, 26821-26830.	1.5	54
63	Toward Lithium Ion Batteries with Enhanced Thermal Conductivity. ACS Nano, 2014, 8, 7202-7207.	7.3	54
64	Spin polarization mechanisms in early stages of photoinduced charge separation in surface-modified TiO2 nanoparticles. Chemical Physics Letters, 2001, 344, 31-39.	1.2	52
65	Self-Assembly of TOPO-Derivatized Silver Nanoparticles into Multilayered Film. Chemistry of Materials, 2003, 15, 4521-4526.	3.2	52
66	Spatially Confined Corner Defects Induce Chemical Functionality of TiO2 Nanorods. Advanced Materials, 2006, 18, 1033-1037.	11.1	52
67	Surface Modification of TiO2: Correlation between Structure, Charge Separation and Reduction Properties Acta Chemica Scandinavica, 1997, 51, 610-618.	0.7	51
68	Photoinitiated Reactions of 2,4,6 TCP on Degussa P25 Formulation TiO2:Â Wavelength-Sensitive Decomposition. Journal of Physical Chemistry B, 2004, 108, 16483-16487.	1.2	50
69	Charge Separation and Surface Reconstruction: A Mn2+Doping Studyâ€. Journal of Physical Chemistry B, 2006, 110, 25441-25450.	1.2	50
70	Electron and Hole Adducts Formed in Illuminated InP Colloidal Quantum Dots Studied by Electron Paramagnetic Resonance. Journal of Physical Chemistry B, 2002, 106, 4390-4395.	1.2	49
71	Synthesis, Structural Characterization, and Photocatalytic Performance of Mesoporous W-MCM-48. Journal of Physical Chemistry C, 2010, 114, 15728-15734.	1.5	46
72	Photocatalytic probing of DNA sequence by using TiO2/dopamine-DNA triads. Chemical Physics, 2007, 339, 154-163.	0.9	45

#	Article	IF	CITATIONS
73	Proton Transfer at Helium Temperatures during Dioxygen Activation by Heme Monooxygenases. Journal of the American Chemical Society, 2004, 126, 15960-15961.	6.6	44
74	Semi-artificial Photosynthetic CO ₂ Reduction through Purple Membrane Re-engineering with Semiconductor. Journal of the American Chemical Society, 2019, 141, 11811-11815.	6.6	44
75	Lightâ€Gated Synthetic Protocells for Plasmonâ€Enhanced Chemiosmotic Gradient Generation and ATP Synthesis. Angewandte Chemie - International Edition, 2019, 58, 4896-4900.	7.2	41
76	Synthesis-Dependent Oxidation State of Platinum on TiO ₂ and Their Influences on the Solar Simulated Photocatalytic Hydrogen Production from Water. Journal of Physical Chemistry C, 2013, 117, 16850-16862.	1.5	40
77	Ultrafast Charge Separation from Highly Reductive ZnTe/CdSe Type II Quantum Dots. Journal of Physical Chemistry Letters, 2012, 3, 2052-2058.	2.1	38
78	Reactions of hydrous titanium oxide colloids with strong oxidizing agents. Langmuir, 1992, 8, 1265-1270.	1.6	36
79	Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres. Journal of Power Sources, 2014, 269, 735-739.	4.0	35
80	Understanding and Curing Structural Defects in Colloidal GaAs Nanocrystals. Nano Letters, 2017, 17, 2094-2101.	4.5	34
81	Photoinduced Kinetics of SERS in Bioinorganic Hybrid Systems. A Case Study: Dopamineâ^`TiO ₂ . Journal of Physical Chemistry B, 2010, 114, 14642-14645.	1.2	33
82	Speciation of <scp>l</scp> -DOPA on Nanorutile as a Function of pH and Surface Coverage Using Surface-Enhanced Raman Spectroscopy (SERS). Langmuir, 2012, 28, 17322-17330.	1.6	32
83	Complex and Charge Transfer between TiO2and Pyrroloquinoline Quinoneâ€. Journal of Physical Chemistry B, 2006, 110, 25392-25398.	1.2	31
84	CO ₂ Preactivation in Photoinduced Reduction via Surface Functionalization of TiO ₂ Nanoparticles. Journal of Physical Chemistry Letters, 2013, 4, 475-479.	2.1	30
85	Probing the Surface of Transition-Metal Nanocrystals by Chemiluminesence. Journal of the American Chemical Society, 2010, 132, 9102-9110.	6.6	29
86	Preparation of TiO2–SiO2 aperiodic mesoporous materials with controllable formation of tetrahedrally coordinated Ti4+ ions and their performance for photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2014, 39, 127-136.	3.8	29
87	Solubility and photocorrosion of small CdS particles. Journal of Photochemistry and Photobiology A: Chemistry, 1988, 42, 157-167.	2.0	28
88	Analytical Treatment of EPR Spectra of Weakly Coupled Spin-Correlated Radical Pairs in Disordered Solids:  Application to the Charge-Separated State in TiO2 Nanoparticles. Journal of Physical Chemistry B, 2002, 106, 938-944.	1.2	27
89	Design of lithium cobalt oxide electrodes with high thermal conductivity and electrochemical performance using carbon nanotubes and diamond particles. Carbon, 2018, 129, 702-710.	5.4	27
90	Light-Induced Charge Separation and Redox Chemistry at the Surface of TiO2/Hostâ^'Guest Hybrid Nanoparticles. Journal of Physical Chemistry B, 2004, 108, 9105-9110.	1.2	26

#	Article	IF	CITATIONS
91	Synthesis of Hybrid Gold/Iron Oxide Nanoparticles in Block Copolymer Micelles for Imaging, Drug Delivery, and Magnetic Hyperthermia. IEEE Transactions on Magnetics, 2009, 45, 4821-4824.	1.2	26
92	Photocatalytic reduction of cadmium on TiO2 nanoparticles modified with amino acids. Chemical Physics Letters, 2005, 407, 110-113.	1.2	24
93	Epitaxial Er-doped Y2O3 on silicon for quantum coherent devices. APL Materials, 2020, 8, .	2.2	23
94	Nitrite Reduction to Nitrous Oxide and Ammonia by TiO ₂ Electrons in a Colloid Solution via Consecutive One-Electron Transfer Reactions. Journal of Physical Chemistry A, 2016, 120, 2307-2312.	1.1	21
95	Enhanced Redox Chemistry in Quantized Semiconductor Colloids. Israel Journal of Chemistry, 1993, 33, 59-65.	1.0	19
96	Solar hydrogen generation over CdS incorporated in Ti-MCM-48 mesoporous materials under visible light illumination. International Journal of Hydrogen Energy, 2016, 41, 4106-4119.	3.8	19
97	Temperature effect on the photoinduced reduction of methyl viologen with several sensitizers and the evolution of hydrogen from water. Journal of Photochemistry and Photobiology, 1983, 21, 35-44.	0.6	18
98	Synthesis of Honeycomb‣tructured Beryllium Oxide via Graphene Liquid Cells. Angewandte Chemie - International Edition, 2020, 59, 15734-15740.	7.2	18
99	Structural Characterization of Self-Organized TiO2 Nanoclusters Studied by Small Angle Neutron Scattering. Journal of Physical Chemistry B, 1999, 103, 2172-2177.	1.2	17
100	Cross-linked Heterogeneous Nanoparticles as Bifunctional Probe. Chemistry of Materials, 2012, 24, 2423-2425.	3.2	17
101	Insight into band positions and inter-particle electron transfer dynamics between CdS nanoclusters and spatially isolated TiO ₂ dispersed in cubic MCM-48 mesoporous materials: a highly efficient system for photocatalytic hydrogen evolution under visible light illumination. Physical Chemistry Chemical Physics, 2014, 16, 2048-2061.	1.3	17
102	Charge Separation in Heterostructures of InP Nanocrystals with Metal Particles. Journal of Physical Chemistry B, 2005, 109, 18243-18249.	1.2	15
103	Quantum chemical study of TiO2/dopamine-DNA triads. Chemical Physics, 2007, 339, 164-172.	0.9	15
104	Atomistic manipulation of reversible oxidation and reduction in Ag with an electron beam. Nanoscale, 2019, 11, 10756-10762.	2.8	14
105	Effects of charged polymers on interfacial electron transfer processes in cadmium sulfide colloidal systems. Langmuir, 1991, 7, 2054-2059.	1.6	13
106	Tinkering with cell machinery. Nature Materials, 2006, 5, 347-348.	13.3	13
107	Photonic microresonator based sensor for selective nitrate ion detection. Sensors and Actuators B: Chemical, 2021, 328, 129027.	4.0	13
108	Controlled nâ€Doping of Naphthaleneâ€Diimideâ€Based 2D Polymers. Advanced Materials, 2022, 34, e2101932.	11.1	13

#	Article	IF	CITATIONS
109	Photoelectroactivity of a Hybrid System Constructed by Immobilization of Avidin onto Biotinylated TiO2Electrodes. Chemistry of Materials, 2006, 18, 2682-2688.	3.2	12
110	Lightâ€Gated Synthetic Protocells for Plasmonâ€Enhanced Chemiosmotic Gradient Generation and ATP Synthesis. Angewandte Chemie, 2019, 131, 4950-4954.	1.6	12
111	Nitric Oxide Reduction to Ammonia by TiO ₂ Electrons in Colloid Solution via Consecutive One-Electron Transfer Steps. Journal of Physical Chemistry A, 2015, 119, 2760-2769.	1.1	11
112	Molecular deposition of a macrocyclic cobalt catalyst on TiO2 nanoparticles. Journal of Molecular Catalysis A, 2016, 423, 293-299.	4.8	10
113	Theoretical study of the ionization potential of thymine: effect of adding conjugated functional groups. Chemical Physics Letters, 2003, 380, 54-62.	1.2	9
114	MULTIFUNCTIONAL NANO–BIO MATERIALS WITHIN CELLULAR MACHINERY. International Journal of Nanoscience, 2011, 10, 899-908.	0.4	9
115	Energy Transfer Induced by Dye Encapsulation in a Hybrid Nanoparticleâ€Purple Membrane Reversible Assembly. Advanced Functional Materials, 2019, 29, 1904899.	7.8	8
116	Ultrafast formation of a transient two-dimensional diamondlike structure in twisted bilayer graphene. Physical Review B, 2020, 102, .	1.1	8
117	Formation and properties of cuprous oxide semiconductor colloids. Langmuir, 1986, 2, 477-480.	1.6	7
118	LIGHT-INDUCED CHARGE SEPARATION ACROSS BIO-INORGANIC INTERFACE. International Journal of Modern Physics B, 2009, 23, 473-491.	1.0	7
119	Magnetization and EPR of a series of Cr3+ squarate dimers. Polyhedron, 2010, 29, 3021-3027.	1.0	7
120	Visualizing Heterogeneity of Monodisperse CdSe Nanocrystals by Their Assembly into Three-Dimensional Supercrystals. ACS Nano, 2020, 14, 14989-14998.	7.3	4
121	Unusual Reduction of Graphene Oxide by Titanium Dioxide Electrons Produced by Ionizing Radiation: Reaction Products and Mechanism. Journal of Physical Chemistry C, 2020, 124, 5425-5435.	1.5	4
122	Photoreduction of Copper on TiO2 Nanoparticles Modified with Polydentate Ligands. Journal of Advanced Oxidation Technologies, 1998, 3, .	0.5	2
123	INTERACTIONS OF THz VIBRATIONAL MODES WITH CHARGE CARRIERS IN DNA: POLARON-PHONON INTERACTIONS. International Journal of High Speed Electronics and Systems, 2007, 17, 293-309.	0.3	2
124	ENVIRONMENTAL EFFECTS INFLUENCING THE VIBRATIONAL MODES OF DNA: NANOSTRUCTURES COUPLED TO BIOMOLECULES. International Journal of High Speed Electronics and Systems, 2008, 18, 47-61.	0.3	2
125	Characterization of Metal lodide Quantum Dots. Materials Science Forum, 1996, 214, 41-48.	0.3	1
126	TiO2 Nanotubes Encapsulating Silver Nanoparticles. Microscopy and Microanalysis, 2006, 12, 656-657.	0.2	0

#	Article	IF	CITATIONS
127	INTERACTIONS OF THz VIBRATIONAL MODES WITH CHARGE CARRIERS IN DNA: POLARON-PHONON INTERACTIONS. Selected Topics in Electornics and Systems, 2007, , 101-117.	0.2	0
128	Sa1617 In Vivo Assessments of EGFR Expression Using Confocal Laser Endomicroscopy in Experimental Models of Colon Cancer. Gastrointestinal Endoscopy, 2012, 75, AB222-AB223.	0.5	0
129	Ultrafast Imaging the Evanescent Electromagnetic Field of Nanostructures by UEM. Microscopy and Microanalysis, 2020, 26, 428-429.	0.2	0
130	ENVIRONMENTAL EFFECTS INFLUENCING THE VIBRATIONAL MODES OF DNA: NANOSTRUCTURES COUPLED TO BIOMOLECULES. Selected Topics in Electornics and Systems, 2008, , 305-319.	0.2	0