Julia A Clarke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8243060/publications.pdf

Version: 2024-02-01

109321 106344 4,810 101 35 citations h-index papers

65 g-index 103 103 103 3074 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature, 2005, 433, 305-308.	27.8	305
2	A Basal Dromaeosaurid and Size Evolution Preceding Avian Flight. Science, 2007, 317, 1378-1381.	12.6	293
3	Plumage Color Patterns of an Extinct Dinosaur. Science, 2010, 327, 1369-1372.	12.6	224
4	The deep divergences of neornithine birds: a phylogenetic analysis of morphological characters. Cladistics, 2003, 19, 527-553.	3.3	212
5	MORPHOLOGY, PHYLOGENETIC TAXONOMY, AND SYSTEMATICS OF ICHTHYORNIS AND APATORNIS (AVIALAE:)	Tj <u>F</u> TQq1	1 0.784314 n
6	Convergent regulatory evolution and loss of flight in paleognathous birds. Science, 2019, 364, 74-78.	12.6	189
7	Reconstruction of <i>Microraptor</i> and the Evolution of Iridescent Plumage. Science, 2012, 335, 1215-1219.	12.6	170
8	Fossil Evidence for Evolution of the Shape and Color of Penguin Feathers. Science, 2010, 330, 954-957.	12.6	153
9	Insight into the evolution of avian flight from a new clade of Early Cretaceous ornithurines from China and the morphology of Yixianornis grabaui. Journal of Anatomy, 2006, 208, 287-308.	1.5	144
10	Insight into diversity, body size and morphological evolution from the largest Early Cretaceous enantiornithine bird. Journal of Anatomy, 2008, 212, 565-577.	1.5	115
11	Paleogene equatorial penguins challenge the proposed relationship between biogeography, diversity, and Cenozoic climate change. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11545-11550.	7.1	113
12	The Morphology and Phylogenetic Position of Apsaravis ukhaana from the Late Cretaceous of Mongolia. American Museum Novitates, 2002, 3387, 1-46.	0.6	109
13	Mosaicism, Modules, and the Evolution of Birds: Results from a Bayesian Approach to the Study of Morphological Evolution Using Discrete Character Data. Systematic Biology, 2008, 57, 185-201.	5.6	103
14	Structural coloration in a fossil feather. Biology Letters, 2010, 6, 128-131.	2.3	100
15	Melanosome evolution indicates a key physiological shift within feathered dinosaurs. Nature, 2014, 507, 350-353.	27.8	95
16	Best practices for digitally constructing endocranial casts: examples from birds and their dinosaurian relatives. Journal of Anatomy, 2016, 229, 173-190.	1.5	86
17	The Global Museum: natural history collections and the future of evolutionary science and public education. PeerJ, 2020, 8, e8225.	2.0	81
18	Fossil that fills a critical gap in avian evolution. Nature, 2001, 409, 181-184.	27.8	80

#	Article	IF	Citations
19	Stratigraphy and Magnetostratigraphic/Faunal Constraints for the Age of Sauropod Embryo-Bearing Rocks in the NeuquA©n Group (Late Cretaceous, NeuquA®n Province, Argentina). American Museum Novitates, 2000, 3290, 1-11.	0.6	74
20	Tempo and Pattern of Avian Brain Size Evolution. Current Biology, 2020, 30, 2026-2036.e3.	3.9	72
21	The Basal Penguin (Aves: Sphenisciformes) Perudyptes devriesi and a Phylogenetic Evaluation of the Penguin Fossil Record. Bulletin of the American Museum of Natural History, 2010, 337, 1-77.	3.4	69
22	Fossil evidence of the avian vocal organ from the Mesozoic. Nature, 2016, 538, 502-505.	27.8	65
23	A bony-crested Jurassic dinosaur with evidence of iridescent plumage highlights complexity in early paravian evolution. Nature Communications, 2018, 9, 217.	12.8	64
24	New Information on the Cranial Anatomy of Acrocanthosaurus atokensis and Its Implications for the Phylogeny of Allosauroidea (Dinosauria: Theropoda). PLoS ONE, 2011, 6, e17932.	2.5	61
25	A New Carinate Bird from the Late Cretaceous of Patagonia (Argentina). American Museum Novitates, 2001, 3323, 1-24.	0.6	59
26	Gastroliths in Yanornis: an indication of the earliest radical diet-switching and gizzard plasticity in the lineage leading to living birds?. Die Naturwissenschaften, 2004, 91, 571-574.	1.6	59
27	Feather Development Genes and Associated Regulatory Innovation Predate the Origin of Dinosauria. Molecular Biology and Evolution, 2015, 32, 23-28.	8.9	57
28	Feathers Before Flight. Science, 2013, 340, 690-692.	12.6	50
29	Colour-producing \hat{l}^2 -keratin nanofibres in blue penguin (<i>Eudyptula minor</i>) feathers. Biology Letters, 2011, 7, 543-546.	2.3	48
30	Taxonomic revison of the basal neornithischian taxa <i>Thescelosaurus</i> and <i>Bugenasaura</i> Journal of Vertebrate Paleontology, 2009, 29, 758-770.		
	journal of Vertebrate Paleontology, 2007, 27, 730-770.	1.0	47
31	Osteology of <i>lcadyptes salasi</i> , a giant penguin from the Eocene of Peru. Journal of Anatomy, 2008, 213, 131-147.	1.0	43
31	Osteology of <i>lcadyptes salasi</i> , a giant penguin from the Eocene of Peru. Journal of Anatomy,		
	Osteology of <i>lcadyptes salasi</i> , a giant penguin from the Eocene of Peru. Journal of Anatomy, 2008, 213, 131-147. Endocranial Anatomy of the Charadriiformes: Sensory System Variation and the Evolution of	1.5	43
32	Osteology of <i>lcadyptes salasi</i> , a giant penguin from the Eocene of Peru. Journal of Anatomy, 2008, 213, 131-147. Endocranial Anatomy of the Charadriiformes: Sensory System Variation and the Evolution of Wing-Propelled Diving. PLoS ONE, 2012, 7, e49584. A small alvarezsaurid from the eastern Gobi Desert offers insight into evolutionary patterns in the	1.5 2.5	43
32	Osteology of <i>lcadyptes salasi</i> <ii>li>, a giant penguin from the Eocene of Peru. Journal of Anatomy, 2008, 213, 131-147. Endocranial Anatomy of the Charadriiformes: Sensory System Variation and the Evolution of Wing-Propelled Diving. PLoS ONE, 2012, 7, e49584. A small alvarezsaurid from the eastern Gobi Desert offers insight into evolutionary patterns in the Alvarezsauroidea. Journal of Vertebrate Paleontology, 2011, 31, 144-153. Systematics and evolution of the Panâ€Alcidae (Aves, Charadriiformes). Journal of Avian Biology, 2015,</ii>	1.5 2.5 1.0	43 43 42

#	Article	IF	Citations
37	Bird neurocranial and body mass evolution across the end-Cretaceous mass extinction: The avian brain shape left other dinosaurs behind. Science Advances, 2021, 7, .	10.3	37
38	Description of the Earliest Fossil Penguin from South America and First Paleogene Vertebrate Locality of Tierra Del Fuego, Argentina. American Museum Novitates, 2003, 3423, 1.	0.6	36
39	Archaeoraptor's better half. Nature, 2002, 420, 285-285.	27.8	35
40	Combined phylogenetic analysis of a new North American fossil species confirms widespread Eocene distribution for stem rollers (Aves, Coracii). Zoological Journal of the Linnean Society, 0, 157, 586-611.	2.3	35
41	Osteological Histology of the Panâ€Alcidae (Aves, Charadriiformes): Correlates of Wingâ€Propelled Diving and Flightlessness. Anatomical Record, 2014, 297, 188-199.	1.4	35
42	Affinities of <i> Palaeospiza bella </i> > and the Phylogeny and Biogeography of Mousebirds (Coliiformes). Auk, 2009, 126, 245-259.	1.4	34
43	Coos, booms, and hoots: The evolution of closedâ€mouth vocal behavior in birds. Evolution; International Journal of Organic Evolution, 2016, 70, 1734-1746.	2.3	34
44	The Anatomy and Taxonomy of the Exquisitely Preserved Green River Formation (Early Eocene) Lithornithids (Aves) and the Relationships of Lithornithidae. Bulletin of the American Museum of Natural History, 2016, 406, 1-91.	3.4	34
45	Stem Parrots (Aves, Halcyornithidae) from the Green River Formation and a Combined Phylogeny of Pan-Psittaciformes. Journal of Paleontology, 2011, 85, 835-852.	0.8	33
46	A falconid from the Late Miocene of northwestern China yields further evidence of transition in Late Neogene steppe communities. Auk, 2014, 131, 335-350.	1.4	32
47	Integrating natural history collections and comparative genomics to study the genetic architecture of convergent evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180248.	4.0	32
48	Podargiform Affinities of the Enigmatic Fluvioviridavis platyrhamphus and the Early Diversification of Strisores ("Caprimulgiformes―+ Apodiformes). PLoS ONE, 2011, 6, e26350.	2.5	30
49	Species Names in the PhyloCode: The Approach Adopted by the International Society for Phylogenetic Nomenclature. Systematic Biology, 2008, 57, 507-514.	5.6	29
50	New fossil mousebird (Aves: Coliiformes) with feather preservation provides insight into the ecological diversity of an Eocene North American avifauna. Zoological Journal of the Linnean Society, 2010, 160, 685-706.	2.3	28
51	<i>Primobucco mcgrewi</i> (Aves: Coracii) from the Eocene Green River Formation: new anatomical data from the earliest constrained record of stem rollers. Journal of Vertebrate Paleontology, 2010, 30, 215-225.	1.0	27
52	Nocturnal giants: evolution of the sensory ecology in elephant birds and other palaeognaths inferred from digital brain reconstructions. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181540.	2.6	27
53	The plumage and colouration of an enantiornithine bird from the early cretaceous of china. Palaeontology, 2017, 60, 55-71.	2.2	26
54	Fossil evidence of wing shape in a stem relative of swifts and hummingbirds (Aves, Pan-Apodiformes). Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130580.	2.6	25

#	Article	IF	Citations
55	New Avialan Remains and a Review of the Known Avifauna from the Late Cretaceous Nemegt Formation of Mongolia. American Museum Novitates, 2004, 3447, 1-12.	0.6	24
56	Stratigraphy and vertebrate paleoecology of Upper Cretaceous–?lowest Paleogene strata on Vega Island, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 402, 55-72.	2.3	24
57	A new ornithurine from the Early Cretaceous of China sheds light on the evolution of early ecological and cranial diversity in birds. Peerl, 2016, 4, e1765.	2.0	24
58	An Alphataxonomic Revision of Extinct and Extant Razorbills (Aves, Alcidae): A Combined Morphometric and Phylogenetic Approach. Ornithological Monographs, 2011, 72, 1-61.	1.3	23
59	New Avian Remains from the Eocene of Mongolia and the Phylogenetic Position of the Eogruidae (Aves, Gruoidea). American Museum Novitates, 2005, 3494, 1.	0.6	21
60	PHYLOGENY AND FORELIMB DISPARITY IN WATERBIRDS. Evolution; International Journal of Organic Evolution, 2014, 68, 2847-2860.	2.3	21
61	Evolutionary shifts in the melanin-based color system of birds. Evolution; International Journal of Organic Evolution, 2016, 70, 445-455.	2.3	21
62	An <i>Elaphrocnemus</i> -Like Landbird and Other Avian Remains from the Late Paleocene of Brazil. Acta Palaeontologica Polonica, 2011, 56, 679-684.	0.4	19
63	Exploring the effects of phylogenetic uncertainty and consensus trees on stratigraphic consistency scores: a new program and a standardized method. Cladistics, 2011, 27, 52-60.	3.3	19
64	Elaborate plumage patterning in a Cretaceous bird. PeerJ, 2018, 6, e5831.	2.0	18
65	A New Enantiornithine Bird from the Upper Cretaceous La Colonia Formation of Patagonia, Argentina. Annals of Carnegie Museum, 2011, 80, 35-42.	0.5	16
66	A Large Ornithurine Bird (Tingmiatornis arctica) from the Turonian High Arctic: Climatic and Evolutionary Implications. Scientific Reports, 2016, 6, 38876.	3.3	16
67	Rhetoric vs. reality: A commentary on "Bird Origins Anew―by A. Feduccia. Auk, 2015, 132, 467-480.	1.4	15
68	Keratin nanofiber distribution and feather microstructure in penguins. Auk, 2018, 135, 777-787.	1.4	15
69	Ancient proteins resolve controversy over the identity of < i>Genyornis < /i>eggshell. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	14
70	First Atlantic record of the puffin <i>Cerorhinca</i> (Aves, Alcidae) from the Pliocene of North Carolina. Journal of Vertebrate Paleontology, 2007, 27, 1039-1042.	1.0	12
71	A re-evaluation of the chemical composition of avian urinary excreta. Journal of Ornithology, 2020, 161, 17-24.	1.1	12
72	Cassowary gloss and a novel form of structural color in birds. Science Advances, 2020, 6, eaba0187.	10.3	12

#	Article	IF	Citations
73	Systematics and phylogeny of the Zygodactylidae (Aves, Neognathae) with description of a new species from the early Eocene of Wyoming, USA. Peerl, 2018, 6, e4950.	2.0	11
74	An Exceptionally Preserved Specimen From the Green River Formation Elucidates Complex Phenotypic Evolution in Gruiformes and Charadriiformes. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	10
75	Metabolic physiology explains macroevolutionary trends in the melanic colour system across amniotes. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20182014.	2.6	9
76	Bird evolution. Current Biology, 2006, 16, R350-R354.	3.9	8
77	A new Old World vulture from the late Miocene of China sheds light on Neogene shifts in the past diversity and distribution of the Gypaetinae. Auk, 2016, 133, 615-625.	1.4	8
78	Vocal specialization through tracheal elongation in an extinct Miocene pheasant from China. Scientific Reports, 2018, 8, 8099.	3.3	8
79	A new zygodactylid species indicates the persistence of stem passerines into the early Oligocene in North America. BMC Evolutionary Biology, 2019, 19, 3.	3.2	8
80	Convergent evolution in dippers (Aves, Cinclidae): The only wingâ€propelled diving songbirds. Anatomical Record, 2022, 305, 1563-1591.	1.4	8
81	Methods for the Quantitative Comparison of Molecular Estimates of Clade Age and the Fossil Record. Systematic Biology, 2015, 64, 25-41.	5. 6	7
82	Exceptional preservation and the fossil record of tetrapod integument. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170556.	2.6	7
83	Shifts in eggshell thickness are related to changes in locomotor ecology in dinosaurs. Evolution; International Journal of Organic Evolution, 2021, 75, 1415-1430.	2.3	7
84	Estimating the distribution of carotenoid coloration in skin and integumentary structures of birds and extinct dinosaurs. Evolution; International Journal of Organic Evolution, 2022, 76, 42-57.	2.3	7
85	CorrigendumCombined phylogenetic analysis of a new North American fossil species confirms widespread Eocene distribution for stem rollers (Aves, Coracii). Zoological Journal of the Linnean Society, 2014, 172, 226-229.	2.3	6
86	The earliest evidence for a supraorbital salt gland in dinosaurs in new Early Cretaceous ornithurines. Scientific Reports, 2018, 8, 3969.	3.3	6
87	Estimating Flight Style of Early Eocene Stem Palaeognath Bird <i>Calciavis grandei</i> (Lithornithidae). Anatomical Record, 2020, 303, 1035-1042.	1.4	6
88	A new species of Eogruidae (Aves: Gruiformes) from the Miocene of the Linxia Basin, Gansu, China: Evolutionary and climatic implications. Auk, 2020, 137 , .	1.4	6
89	An avian femur from the Late Cretaceous of Vega Island, Antarctic Peninsula: removing the record of cursorial landbirds from the Mesozoic of Antarctica. Peerl, 2019, 7, e7231.	2.0	6
90	New mammalian and avian records from the late Eocene La Meseta and Submeseta formations of Seymour Island, Antarctica. PeerJ, 2020, 8, e8268.	2.0	6

#	Article	IF	Citations
91	Fossils and avian evolution. Nature, 2001, 414, 508-508.	27.8	5
92	phenotools: An r package for visualizing and analysing phenomic datasets. Methods in Ecology and Evolution, 2019, 10, 1393-1400.	5.2	5
93	Novel evolution of a hyperâ€elongated tongue in a Cretaceous enantiornithine from China and the evolution of the hyolingual apparatus and feeding in birds. Journal of Anatomy, 2022, 240, 627-638.	1.5	4
94	Flight, symmetry and barb angle evolution in the feathers of birds and other dinosaurs. Biology Letters, 2019, 15, 20190622.	2.3	3
95	A small alvarezsaurid from the eastern Gobi Desert offers insight into evolutionary patterns in the Alvarezsauroidea. Journal of Vertebrate Paleontology, 2011, 31, 144-153.	1.0	3
96	New Remains of Scandiavis mikkelseni Inform Avian Phylogenetic Relationships and Brain Evolution. Diversity, 2021, 13, 651.	1.7	3
97	Genomic mechanisms for the evolution of flightlessness in steamer ducks. Nature, 2019, 572, 182-184.	27.8	2
98	The deep divergences of neornithine birds: a phylogenetic analysis of morphological characters. Cladistics, 2003, 19, 527-553.	3.3	2
99	Mesozoic Birds: Above the Heads of Dinosaurs. Journal of Paleontology, 2003, 77, 822-823.	0.8	0
100	Mesozoic Birds: Above the Heads of Dinosaurs. L. M. Chiappe and L. M. Witmer (eds.). 2002. University of California Press, Berkeley, 532 p Journal of Paleontology, 2003, 77, 822-823.	0.8	0
101	Guidelines for removal, preservation, and CT imaging of the syrinx, the avian vocal organ. Wilson Journal of Ornithology, 2021, 132, .	0.2	0