John McLauchlan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8242930/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Real-World Outcomes of Direct-Acting Antiviral Treatment and Retreatment in United Kingdom–Based Patients Infected With Hepatitis C Virus Genotypes/Subtypes Endemic in Africa. Journal of Infectious Diseases, 2022, 226, 995-1004.	4.0	8
2	The Transmission Route and Selection Pressure in HCV Subtype 3a and 3b Chinese Infections: Evolutionary Kinetics and Selective Force Analysis. Viruses, 2022, 14, 1514.	3.3	3
3	An interferon lambda 4-associated variant in the hepatitis C virus RNA polymerase affects viral replication in infected cells. Journal of General Virology, 2021, 102, .	2.9	5
4	Real world SOF/VEL/VOX retreatment outcomes and viral resistance analysis for HCV patients with prior failure to DAA therapy. Journal of Viral Hepatitis, 2021, 28, 1256-1264.	2.0	16
5	Viral genome wide association study identifies novel hepatitis C virus polymorphisms associated with sofosbuvir treatment failure. Nature Communications, 2021, 12, 6105.	12.8	11
6	Conserved Induction of Distinct Antiviral Signalling Kinetics by Primate Interferon Lambda 4 Proteins. Frontiers in Immunology, 2021, 12, 772588.	4.8	6
7	Direct Antiviral Activity of IFN-Stimulated Genes Is Responsible for Resistance to Paramyxoviruses in ISG15-Deficient Cells. Journal of Immunology, 2020, 205, 261-271.	0.8	12
8	Amino Acid Substitutions in Genotype 3a Hepatitis C Virus Polymerase Protein Affect Responses to Sofosbuvir. Gastroenterology, 2019, 157, 692-704.e9.	1.3	27
9	Consensus recommendations for resistance testing in the management of chronic hepatitis C virus infection: Public Health England HCV Resistance Group. Journal of Infection, 2019, 79, 503-512.	3.3	23
10	Interpreting Viral Deep Sequencing Data with GLUE. Viruses, 2019, 11, 323.	3.3	29
11	HCV genotype 6 prevalence, spontaneous clearance and diversity among elderly members of the Li ethnic minority in Baisha County, China. Journal of Viral Hepatitis, 2019, 26, 529-540.	2.0	8
12	Highly Diverse Hepatitis C Strains Detected in Subâ€5aharan Africa Have Unknown Susceptibility to Directâ€Acting Antiviral Treatments. Hepatology, 2019, 69, 1426-1441.	7.3	36
13	Interferon lambda 4 impacts the genetic diversity of hepatitis C virus. ELife, 2019, 8, .	6.0	28
14	Reply to: "Reply to: †Response to DAA therapy in the NHS England Early Access Programme for rare HCV subtypes from low and middle income countries'― Journal of Hepatology, 2018, 68, 864-866.	3.7	2
15	GLUE: a flexible software system for virus sequence data. BMC Bioinformatics, 2018, 19, 532.	2.6	84
16	Differential induction of interferon stimulated genes between type I and type III interferons is independent of interferon receptor abundance. PLoS Pathogens, 2018, 14, e1007420.	4.7	100
17	A polymorphic residue that attenuates the antiviral potential of interferon lambda 4 in hominid lineages. PLoS Pathogens, 2018, 14, e1007307.	4.7	25
18	Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface. Viruses, 2018, 10, 28.	3.3	8

JOHN MCLAUCHLAN

#	Article	IF	CITATIONS
19	Genome-to-genome analysis highlights the effect of the human innate and adaptive immune systems on the hepatitis C virus. Nature Genetics, 2017, 49, 666-673.	21.4	129
20	Response to DAA therapy in the NHS England Early Access Programme for rare HCV subtypes from low and middle income countries. Journal of Hepatology, 2017, 67, 1348-1350.	3.7	31
21	Comparison of Next-Generation Sequencing Technologies for Comprehensive Assessment of Full-Length Hepatitis C Viral Genomes. Journal of Clinical Microbiology, 2016, 54, 2470-2484.	3.9	112
22	Outcomes after successful direct-acting antiviral therapy for patients with chronic hepatitis C and decompensated cirrhosis. Journal of Hepatology, 2016, 65, 741-747.	3.7	351
23	Impact of direct acting antiviral therapy in patients with chronic hepatitis C and decompensated cirrhosis. Journal of Hepatology, 2016, 64, 1224-1231.	3.7	425
24	Hepatitis C virus and lipid droplets: finding a niche. Trends in Molecular Medicine, 2015, 21, 34-42.	6.7	93
25	Inhibition of hepatitis C virus RNA replication by ISG15 does not require its conjugation to protein substrates by the HERC5 E3 ligase. Journal of General Virology, 2015, 96, 3236-3242.	2.9	28
26	Modulation of Triglyceride and Cholesterol Ester Synthesis Impairs Assembly of Infectious Hepatitis C Virus. Journal of Biological Chemistry, 2014, 289, 21276-21288.	3.4	54
27	Bidirectional Lipid Droplet Velocities Are Controlled by Differential Binding Strengths of HCV Core DII Protein. PLoS ONE, 2013, 8, e78065.	2.5	19
28	Structural Analysis of Hepatitis C Virus Core-E1 Signal Peptide and Requirements for Cleavage of the Genotype 3a Signal Sequence by Signal Peptide Peptidase. Journal of Virology, 2012, 86, 7818-7828.	3.4	21
29	Lipid Metabolism and HCV Infection. Viruses, 2010, 2, 1195-1217.	3.3	43
30	Requirement of cellular DDX3 for hepatitis C virus replication is unrelated to its interaction with the viral core protein. Journal of General Virology, 2010, 91, 122-132.	2.9	96
31	Hepatitis C Virus Core Protein Induces Lipid Droplet Redistribution in a Microtubule―and Dyneinâ€Dependent Manner. Traffic, 2008, 9, 1268-1282.	2.7	194
32	Maturation of Hepatitis C Virus Core Protein by Signal Peptide Peptidase Is Required for Virus Production. Journal of Biological Chemistry, 2008, 283, 16850-16859.	3.4	78
33	Transcriptional slippage prompts recoding in alternate reading frames in the hepatitis C virus (HCV) core sequence from strain HCV-1. Journal of General Virology, 2008, 89, 1569-1578.	2.9	31
34	Visualization of Double-Stranded RNA in Cells Supporting Hepatitis C Virus RNA Replication. Journal of Virology, 2008, 82, 2182-2195.	3.4	157
35	Mobility analysis of an NS5A–GFP fusion protein in cells actively replicating hepatitis C virus subgenomic RNA. Journal of General Virology, 2007, 88, 470-475.	2.9	36
36	The Lipid Droplet Binding Domain of Hepatitis C Virus Core Protein Is a Major Determinant for Efficient Virus Assembly. Journal of Biological Chemistry, 2007, 282, 37158-37169.	3.4	218

John McLauchlan

#	Article	IF	CITATIONS
37	Disrupting the association of hepatitis C virus core protein with lipid droplets correlates with a loss in production of infectious virus. Journal of General Virology, 2007, 88, 2204-2213.	2.9	225
38	Efficient cleavage by signal peptide peptidase requires residues within the signal peptide between the core and E1 proteins of hepatitis C virus strain J1. Journal of General Virology, 2006, 87, 623-627.	2.9	21
39	Structural Determinants That Target the Hepatitis C Virus Core Protein to Lipid Droplets. Journal of Biological Chemistry, 2006, 281, 22236-22247.	3.4	188
40	Development and characterization of a transient-replication assay for the genotype 2a hepatitis C virus subgenomic replicon. Journal of General Virology, 2005, 86, 3075-3080.	2.9	77
41	Mobility of the hepatitis C virus NS4B protein on the endoplasmic reticulum membrane and membrane-associated foci. Journal of General Virology, 2005, 86, 1415-1421.	2.9	55
42	Live Cell Analysis and Targeting of the Lipid Droplet-binding Adipocyte Differentiation-related Protein. Journal of Biological Chemistry, 2003, 278, 15998-16007.	3.4	183
43	The Domains Required to Direct Core Proteins of Hepatitis C Virus and GB Virus-B to Lipid Droplets Share Common Features with Plant Oleosin Proteins. Journal of Biological Chemistry, 2002, 277, 4261-4270.	3.4	148
44	Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO Journal, 2002, 21, 3980-3988.	7.8	418
45	Sequence motifs required for lipid droplet association and protein stability are unique to the hepatitis C virus core protein. Journal of General Virology, 2000, 81, 1913-1925.	2.9	197
46	Structural features of ribonucleotide reductase. Proteins: Structure, Function and Bioinformatics, 1986, 1, 376-384.	2.6	83
47	A 3′ co-terminus of two early herpes simplex virus type 1 mRNAs. Nucleic Acids Research, 1982, 10, 501-512.	14.5	39
48	The Evolutionary Dynamics and Epidemiological History of Hepatitis C Virus Genotype 6, Including Unique Strains from the Li Community of Hainan Island, China. Virus Evolution, 0, , .	4.9	1