Marc R Block

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8241480/publications.pdf

Version: 2024-02-01

64 papers

4,649 citations

30 h-index 66 g-index

68 all docs 68 docs citations

68 times ranked 4201 citing authors

#	Article	IF	CITATIONS
1	The mechano-sensitive response of \hat{l}^21 integrin promotes SRC-positive late endosome recycling and activation of Yes-associated protein. Journal of Biological Chemistry, 2020, 295, 13474-13487.	3.4	8
2	\hat{l}^21 integrins mediate the BMP2 dependent transcriptional control of osteoblast differentiation and osteogenesis. PLoS ONE, 2018, 13, e0196021.	2.5	22
3	β1 integrin–dependent Rac/group I PAK signaling mediates YAP activation of Yes-associated protein 1 (YAP1) via NF2/merlin. Journal of Biological Chemistry, 2017, 292, 19179-19197.	3.4	91
4	Roles of paxillin family members in adhesion and ECM degradation coupling at invadosomes. Journal of Cell Biology, 2016, 213, 585-599.	5.2	23
5	Time-lapse contact microscopy of cell cultures based on non-coherent illumination. Scientific Reports, 2015, 5, 14532.	3.3	8
6	Type, Density, and Presentation of Grafted Adhesion Peptides on Polysaccharide-Based Hydrogels Control Preosteoblast Behavior and Differentiation. Biomacromolecules, 2015, 16, 715-722.	5.4	23
7	Targeting Integrin-Dependent Adhesion and Signaling with 3-Arylquinoline and 3-Aryl-2-Quinolone Derivatives: A new Class of Integrin Antagonists. PLoS ONE, 2015, 10, e0141205.	2.5	4
8	New Insights into Adhesion Signaling in Bone Formation. International Review of Cell and Molecular Biology, 2013, 305, 1-68.	3.2	23
9	Calcium and Calmodulin-dependent Serine/Threonine Protein Kinase Type II (CaMKII)-mediated Intramolecular Opening of Integrin Cytoplasmic Domain-associated Protein-1 (ICAP- $1\hat{1}\pm$) Negatively Regulates \hat{I}^21 Integrins. Journal of Biological Chemistry, 2013, 288, 20248-20260.	3.4	19
10	Design of Biomimetic Cell-Interactive Substrates Using Hyaluronic Acid Hydrogels with Tunable Mechanical Properties. Biomacromolecules, 2012, 13, 1818-1827.	5.4	116
11	Cooperativity between Integrin Activation and Mechanical Stress Leads to Integrin Clustering. Biophysical Journal, 2011, 100, 2595-2604.	0.5	18
12	Specificities of \hat{I}^21 integrin signaling in the control of cell adhesion and adhesive strength. European Journal of Cell Biology, 2011, 90, 261-269.	3.6	14
13	Invadosome regulation by adhesion signaling. Current Opinion in Cell Biology, 2011, 23, 597-606.	5.4	122
14	Osteoblast mineralization requires β1 integrin/ICAP-1–dependent fibronectin deposition. Journal of Cell Biology, 2011, 194, 307-322.	5.2	106
15	Osteoblast mineralization requires b1 integrin/ICAP-1–dependent fibronectin deposition. Journal of Experimental Medicine, 2011, 208, i26-i26.	8.5	1
16	$\hat{l}^2 1 A$ Integrin Is a Master Regulator of Invadosome Organization and Function. Molecular Biology of the Cell, 2010, 21, 4108-4119.	2.1	106
17	Single Cells Spreading on a Protein Lattice Adopt an Energy Minimizing Shape. Physical Review Letters, 2010, 105, 128101.	7.8	34
18	Excitable waves at the margin of the contact area between a cell and a substrate. Physical Biology, 2009, 6, 025010.	1.8	2

#	Article	IF	CITATIONS
19	Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions. Journal of Cell Science, 2009, 122, 3037-3049.	2.0	284
20	Lamellipodia nucleation by filopodia depends on integrin occupancy and downstream Rac1 signaling. Experimental Cell Research, 2008, 314, 478-488.	2.6	62
21	Podosome-type adhesions and focal adhesions, so alike yet so different. European Journal of Cell Biology, 2008, 87, 491-506.	3.6	141
22	Cell adaptive response to extracellular matrix density is controlled by ICAP-1–dependent β1-integrin affinity. Journal of Cell Biology, 2008, 180, 427-441.	5.2	88
23	Paxillin Phosphorylation Controls Invadopodia/Podosomes Spatiotemporal Organization. Molecular Biology of the Cell, 2008, 19, 633-645.	2.1	99
24	Functional Interaction of Aurora-A and PP2A during Mitosis. Molecular Biology of the Cell, 2007, 18, 1233-1241.	2.1	51
25	Cyclin-Dependent Kinase 2/Cyclin E Complex Is Involved in p120 Catenin (p120ctn)–Dependent Cell Growth Control: A New Role for p120ctn in Cancer. Cancer Research, 2007, 67, 9781-9790.	0.9	34
26	Defective osteoblast function in ICAP-1-deficient mice. Development (Cambridge), 2007, 134, 2615-2625.	2.5	59
27	Unraveling ICAP-1 function: Toward a new direction?. European Journal of Cell Biology, 2006, 85, 275-282.	3.6	20
28	Laminin-5-integrin interaction signals through PI 3-kinase and Rac1b to promote assembly of adherens junctions in HT-29 cells. Journal of Cell Science, 2006, 119, 31-46.	2.0	35
29	Nuclear Translocation of Integrin Cytoplasmic Domain-associated Protein 1 Stimulates Cellular Proliferation. Molecular Biology of the Cell, 2005, 16, 1859-1871.	2.1	35
30	Proteolysis leads to the appearance of the long form of \hat{l}^2 3-endonexin in human platelets. Experimental Cell Research, 2005, 305, 427-435.	2.6	2
31	Early enterocytic differentiation of HT-29 cells: biochemical changes and strength increases of adherens junctions. Experimental Cell Research, 2004, 299, 498-510.	2.6	33
32	New insights into Nm23 control of cell adhesion and migration. Journal of Bioenergetics and Biomembranes, 2003, 35, 81-87.	2.3	40
33	Disruption of Focal Adhesions by Integrin Cytoplasmic Domain-associated Protein-1α. Journal of Biological Chemistry, 2003, 278, 6567-6574.	3.4	79
34	Integrin Cytoplasmic Domain-associated Protein $1\hat{l}\pm$ (ICAP- $1\hat{l}\pm$) Interacts Directly with the Metastasis Suppressor nm23-H2, and Both Proteins Are Targeted to Newly Formed Cell Adhesion Sites upon Integrin Engagement. Journal of Biological Chemistry, 2002, 277, 20895-20902.	3.4	94
35	Conformation, Localization, and Integrin Binding of Talin Depend on Its Interaction with Phosphoinositides. Journal of Biological Chemistry, 2001, 276, 21217-21227.	3.4	283
36	RhoA-dependent Switch between $\hat{1}\pm2\hat{1}^21$ and $\hat{1}\pm3\hat{1}^21$ Integrins Is Induced by Laminin-5 during Early Stage of HT-29 Cell Differentiation. Molecular Biology of the Cell, 2001, 12, 3268-3281.	2.1	26

#	Article	IF	CITATIONS
37	Grafting an RGD motif onto an epidermal growth factor-like module: chemical synthesis and functional characterization of the chimeric molecule. Chemical Biology and Drug Design, 1999, 54, 415-426.	1.1	7
38	Calcium/Calmodulin-Dependent Protein Kinase II Controls Integrin $\hat{l}\pm 5\hat{l}^21$ -Mediated Cell Adhesion through the Integrin Cytoplasmic Domain Associated Protein- $1\hat{l}\pm$. Biochemical and Biophysical Research Communications, 1998, 252, 46-50.	2.1	53
39	Adhesion of Mature Polyploid Megakaryocytes to Fibronectin Is Mediated by \hat{l}^21 Integrins and Leads to Cell Damage. Experimental Cell Research, 1998, 242, 315-327.	2.6	13
40	Cotranscription of two RNA coding for the cell adhesion regulator and its variant in Reh leukemia cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1996, 1315, 6-8.	3.8	2
41	Control of the .alpha.5.beta.1 integrin/fibronectin interaction in vitro by the serine/threonine protein phosphatase calcineurin. Biochemistry, 1995, 34, 5104-5112.	2.5	29
42	Intracellular Processing of Talin Occurs within Focal Adhesions. Experimental Cell Research, 1995, 217, 149-156.	2.6	29
43	Identification of Vinculin as a Pericentriolar Component in Mammalian Cells. Experimental Cell Research, 1995, 219, 399-406.	2.6	7
44	Internalization of the $\hat{l}\pm5\hat{l}^21$ Integrin Does Not Depend on "NPXY" Signals. Biochemical and Biophysical Research Communications, 1994, 199, 603-611.	2.1	25
45	[28] Purification of N-ethylmaleimide-sensitive fusion protein. Methods in Enzymology, 1992, 219, 300-309.	1.0	13
46	Fibronectin receptors are functional on mitotic Chinese hamster ovary cells. Biochemical and Biophysical Research Communications, 1992, 189, 1429-1436.	2.1	4
47	An in vitro model giving access to adhesion plaques. In Vitro Cellular & Developmental Biology, 1992, 28, 17-23.	1.0	3
48	Semi-intact CHO and endothelial cells: A tool to probe the control of integrin activity?. Experimental Cell Research, 1991, 192, 173-181.	2.6	10
49	Binding of an N-ethylmaleimide-sensitive fusion protein to Golgi membranes requires both a soluble protein(s) and an integral membrane receptor Journal of Cell Biology, 1989, 108, 1589-1596.	5.2	180
50	A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature, 1989, 339, 355-359.	27.8	574
51	Vesicular transport between the endoplasmic reticulum and the Golgi stack requires the NEM-sensitive fusion protein. Nature, 1989, 339, 397-398.	27.8	294
52	Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack. Cell, 1988, 54, 221-227.	28.9	377
53	Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 7852-7856.	7.1	504
54	Dependence of the conformational state of the isolated adenine nucleotide carrier protein on the detergent used for solubilization. Biochemistry, 1986, 25, 374-379.	2.5	19

#	Article	IF	CITATION
55	[52] Chemical modifications and active site labeling of the mitochondrial ADP/ATP carrier. Methods in Enzymology, 1986, 125, 658-670.	1.0	6
56	[50] Fluorescent probes of the mitochondrial ADP/ATP carrier protein. Methods in Enzymology, 1986, 125, 639-649.	1.0	6
57	Substrate-site interactions in the membrane-bound adenine-nucleotide carrier as disclosed by ADP and ATP analogs. Biochimica Et Biophysica Acta - Bioenergetics, 1984, 767, 369-376.	1.0	33
58	Use of 3'-O-naphthoyladenosine 5'-diphosphate to probe distinct conformational states of the membrane-bound ADP/ATP carrier. Biochemistry, 1983, 22, 2202-2208.	2.5	26
59	Interaction of naphthoyl-ADP a fluorescent ADP analog, with the ADP/ATP carrier protein in the mitochondrial membrane. Biochemistry, 1982, 21, 5451-5457.	2.5	31
60	Small angle neutron scattering of the mitochondrial ADPATP carrier protein in detergent. Biochemical and Biophysical Research Communications, 1982, 109, 471-477.	2.1	59
61	Chemical modifications of atractyloside and bongkrekic acid binding sites of the mitochondrial adenine nucleotide carrier. Are there distinct binding sites?. Biochemistry, 1981, 20, 2692-2699.	2.5	31
62	Atractyloside and bongkrekic acid sites in the mitochondrial ADP/ATP carrier protein. FEBS Letters, 1981, 131, 213-218.	2.8	23
63	Chemical radiolabeling of carboxyatractyloside by [14 C]acetic anhydride. FEBS Letters, 1980, 117, 335-340.	2.8	21
64	Differential inactivation of atractyloside and bongkrekic acid binding sites on the adenine nucleotide carrier by ultraviolet light. FFBS Letters. 1979, 104, 425-430.	2.8	27