Rustamzhon Melikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8241388/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stokes-Shift-Engineered Indium Phosphide Quantum Dots for Efficient Luminescent Solar Concentrators. ACS Applied Materials & Interfaces, 2018, 10, 12975-12982.	8.0	93
2	Quantum dot white LEDs with high luminous efficiency. Optica, 2018, 5, 793.	9.3	84
3	Ecofriendly and Efficient Luminescent Solar Concentrators Based on Fluorescent Proteins. ACS Applied Materials & Interfaces, 2019, 11, 8710-8716.	8.0	45
4	Cadmium-Free and Efficient Type-II InP/ZnO/ZnS Quantum Dots and Their Application for LEDs. ACS Applied Materials & Interfaces, 2021, 13, 32022-32030.	8.0	41
5	Silk-hydrogel Lenses for Light-emitting Diodes. Scientific Reports, 2017, 7, 7258.	3.3	37
6	Light-Emitting Devices Based on Type-II InP/ZnO Quantum Dots. ACS Photonics, 2019, 6, 939-946.	6.6	35
7	Organic Photovoltaic Pseudocapacitors for Neurostimulation. ACS Applied Materials & Interfaces, 2020, 12, 42997-43008.	8.0	34
8	High-Performance, Large-Area, and Ecofriendly Luminescent Solar Concentrators Using Copper-Doped InP Quantum Dots. IScience, 2020, 23, 101272.	4.1	32
9	Structural control of InP/ZnS core/shell quantum dots enables high-quality white LEDs. Nanotechnology, 2018, 29, 345605.	2.6	30
10	Excitonic Energy Transfer within InP/ZnS Quantum Dot Langmuir–Blodgett Assemblies. Journal of Physical Chemistry C, 2018, 122, 11616-11622.	3.1	27
11	Fluorescent protein integrated white LEDs for displays. Nanotechnology, 2016, 27, 45LT01.	2.6	25
12	Band Alignment Engineers Faradaic and Capacitive Photostimulation of Neurons Without Surface Modification. Physical Review Applied, 2019, 11, .	3.8	23
13	Biocompatible Quantum Funnels for Neural Photostimulation. Nano Letters, 2019, 19, 5975-5981.	9.1	22
14	Quantum dot and electron acceptor nano-heterojunction for photo-induced capacitive charge-transfer. Scientific Reports, 2021, 11, 2460.	3.3	19
15	Unravelling radiative energy transfer in solid-state lighting. Journal of Applied Physics, 2018, 123, .	2.5	18
16	Plasmon-Coupled Photocapacitor Neuromodulators. ACS Applied Materials & Interfaces, 2020, 12, 35940-35949.	8.0	18
17	High-Performance White Light-Emitting Diodes over 150 lm/W Using Near-Unity-Emitting Quantum Dots in a Liquid Matrix. ACS Photonics, 2022, 9, 1304-1314.	6.6	18
18	Allâ€Optical and Labelâ€Free Stimulation of Action Potentials in Neurons and Cardiomyocytes by Plasmonic Porous Metamaterials. Advanced Science, 2021, 8, e2100627.	11.2	14

RUSTAMZHON MELIKOV

0

#	Article	IF	CITATIONS
19	High quality quantum dots polymeric films as color converters for smart phone display technology. Materials Research Express, 2019, 6, 035015.	1.6	13
20	Nanoengineering InP Quantum Dot-Based Photoactive Biointerfaces for Optical Control of Neurons. Frontiers in Neuroscience, 2021, 15, 652608.	2.8	13
21	Efficient photocapacitors via ternary hybrid photovoltaic optimization for photostimulation of neurons. Biomedical Optics Express, 2020, 11, 5237.	2.9	11
22	Silk-Based Aqueous Microcontact Printing. ACS Biomaterials Science and Engineering, 2018, 4, 1463-1470.	5.2	10
23	Biomaterial Disk Lasers by Suppressing the Coffee Ring Effect. ACS Biomaterials Science and Engineering, 2018, 4, 4385-4390.	5.2	10
24	Ultraâ€Efficient and Highâ€Quality White Lightâ€Emitting Devices using Fluorescent Proteins in Aqueous Medium. Advanced Materials Technologies, 2020, 5, 2000061.	5.8	10
25	3D coffee stains. Materials Chemistry Frontiers, 2017, 1, 2360-2367.	5.9	9
26	Ultraefficient Green LEDs Using Quantum Dots in Liquid Matrix. IEEE Transactions on Electron Devices, 2019, 66, 4784-4789.	3.0	7
27	Bulk-heterojunction photocapacitors with high open-circuit voltage for low light intensity photostimulation of neurons. Journal of Materials Chemistry C, 2021, 9, 1755-1763.	5.5	7
28	Bidirectional optical neuromodulation using capacitive charge-transfer. Biomedical Optics Express, 2020, 11, 6068.	2.9	7
29	Thermal and Optical Performance of Eco-Friendly Silk Fibroin Proteins as a Cavity Encapsulation Over LED Systems. , 2015, , .		2
30	White LEDs: Ultraâ€Efficient and Highâ€Quality White Lightâ€Emitting Devices using Fluorescent Proteins in Aqueous Medium (Adv. Mater. Technol. 6/2020). Advanced Materials Technologies, 2020, 5, 2070035.	5.8	2
31	Cation exchange mediated synthesis of bright Au@ZnTe core–shell nanocrystals. Nanotechnology, 2021, 32, 025603.	2.6	2
32	Silk as a biodegradable resist for field-emission scanning probe lithography. Nanotechnology, 2020, 31, 435303.	2.6	1
33	Protein Integrated White LEDs for Lighting. , 2016, , .		1
34	Radiative Energy Transfer in Color-conversion LEDs. , 2018, , .		0
35	All-protein 3D coffee stain lasers. , 2018, , .		0

Eco-friendly Silk-hydrogel Lenses for LEDs. , 2018, , .

#	Article	IF	CITATIONS
37	Control over capacitive and Faradaic extracellular photostimulation of neurons using intermediate ZnO layer for organic bio-interfaces. , 2020, , .		0
38	Self-assembled, flexible, and transient biomaterial disk lasers (Conference Presentation). , 2020, , .		0
39	InP quantum dot based optoelectronic biointerfaces for high level control of photostimulation of neurons (Conference Presentation). , 2020, , .		0
40	Light-emitting devices based on type-II InP/ZnO quantum dots (Conference Presentation). , 2020, , .		0