List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8241046/publications.pdf Version: 2024-02-01

JANNE T RUOKOLAINEN

#	Article	IF	CITATIONS
1	A concise review on the cultivation of microalgal biofilms for biofuel feedstock production. Biomass Conversion and Biorefinery, 2024, 14, 7219-7236.	2.9	8
2	Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection. Journal of Advanced Research, 2022, 38, 223-244.	4.4	86
3	Re-establishing the comprehension of phytomedicine and nanomedicine in inflammation-mediated cancer signaling. Seminars in Cancer Biology, 2022, 86, 1086-1104.	4.3	25
4	Molecular mechanisms of developmental pathways in neurological disorders: a pharmacological and therapeutic review. Open Biology, 2022, 12, 210289.	1.5	12
5	High precision pulp-based sacrificial molds: A solution towards mass production of hollow ceramic spheres for deep sea applications. Ceramics International, 2022, 48, 8235-8244.	2.3	2
6	Molecular Insights into Therapeutic Potentials of Hybrid Compounds Targeting Alzheimer's Disease. Molecular Neurobiology, 2022, 59, 3512-3528.	1.9	15
7	Mechanistic role of HPV-associated early proteins in cervical cancer: Molecular pathways and targeted therapeutic strategies. Critical Reviews in Oncology/Hematology, 2022, 174, 103675.	2.0	44
8	Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Seminars in Cancer Biology, 2021, 69, 166-177.	4.3	197
9	Cellulose dissolution in aqueous NaOH–ZnO: cellulose reactivity and the role of ZnO. Cellulose, 2021, 28, 1267-1281.	2.4	11
10	Benzene tricarboxamide derivatives with lipid and ethylene glycol chains self-assemble into distinct nanostructures driven by molecular packing. Chemical Communications, 2021, 57, 8360-8363.	2.2	4
11	One-step microfluidics production of enzyme-loaded liposomes for the treatment of inflammatory diseases. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111556.	2.5	23
12	The <scp>FBXW7â€NOTCH interactome</scp> : A ubiquitin proteasomal systemâ€induced crosstalk modulating oncogenic transformation in human tissues. Cancer Reports, 2021, 4, e1369.	0.6	12
13	A Comparative Cross-Platform Meta-Analysis to Identify Potential Biomarker Genes Common to Endometriosis and Recurrent Pregnancy Loss. Applied Sciences (Switzerland), 2021, 11, 3349.	1.3	1
14	Oxidative Stress in Cancer Cell Metabolism. Antioxidants, 2021, 10, 642.	2.2	231
15	miRNAs in SARS-CoV 2: A Spoke in the Wheel of Pathogenesis. Current Pharmaceutical Design, 2021, 27, 1628-1641.	0.9	33
16	Wastewater Treatment and Reuse: a Review of its Applications and Health Implications. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	126
17	Environmental Factors-Induced Oxidative Stress: Hormonal and Molecular Pathway Disruptions in Hypogonadism and Erectile Dysfunction. Antioxidants, 2021, 10, 837.	2.2	28
18	Infrared photo-induced force microscopy unveils nanoscale features of Norway spruce fibre wall. Cellulose, 2021, 28, 7295-7309.	2.4	7

JANNE T RUOKOLAINEN

#	Article	IF	CITATIONS
19	Vitamin K2 Modulates Organelle Damage and Tauopathy Induced by Streptozotocin and Menadione in SH-SY5Y Cells. Antioxidants, 2021, 10, 983.	2.2	6
20	Scavenging Properties of Plant-Derived Natural Biomolecule Para-Coumaric Acid in the Prevention of Oxidative Stress-Induced Diseases. Antioxidants, 2021, 10, 1205.	2.2	27
21	Phytomedicines Targeting Cancer Stem Cells: Therapeutic Opportunities and Prospects for Pharmaceutical Development. Pharmaceuticals, 2021, 14, 676.	1.7	13
22	Self-Assembly of Angiotensin-Converting Enzyme Inhibitors Captopril and Lisinopril and Their Crystal Structures. Langmuir, 2021, 37, 9170-9178.	1.6	2
23	Total Stromal Fraction (TSF) - Fortified Adipose tissue-derived Stem Cells Source: An Emerging Regenerative Realm Against COVID-19 Induced Pulmonary Compromise. Coronaviruses, 2021, 02, .	0.2	0
24	Recent Advances in Cardiac Tissue Engineering for the Management of Myocardium Infarction. Cells, 2021, 10, 2538.	1.8	19
25	Hypoxia-targeted cupric-tirapazamine liposomes potentiate radiotherapy in prostate cancer spheroids. International Journal of Pharmaceutics, 2021, 607, 121018.	2.6	11
26	Alpha helical surfactant-like peptides self-assemble into pH-dependent nanostructures. Soft Matter, 2021, 17, 3096-3104.	1.2	13
27	Evidence of Coronavirus (CoV) Pathogenesis and Emerging Pathogen SARS-CoV-2 in the Nervous System: A Review on Neurological Impairments and Manifestations. Journal of Molecular Neuroscience, 2021, 71, 2192-2209.	1.1	89
28	Model self-assembling arginine-based tripeptides show selective activity against <i>Pseudomonas</i> bacteria. Chemical Communications, 2020, 56, 615-618.	2.2	14
29	Hybrid red blood cell membrane coated porous silicon nanoparticles functionalized with cancer antigen induce depletion of T cells. RSC Advances, 2020, 10, 35198-35205.	1.7	10
30	Evaluation of the effects of nanoprecipitation process parameters on the size and morphology of poly(ethylene oxide)-block-polycaprolactone nanostructures. International Journal of Pharmaceutics, 2020, 590, 119900.	2.6	7
31	Lignans in Knotwood of Norway Spruce: Localisation with Soft X-ray Microscopy and Scanning Transmission Electron Microscopy with Energy Dispersive X-ray Spectroscopy. Molecules, 2020, 25, 2997.	1.7	7
32	Nanoparticulate RNA delivery systems in cancer. Cancer Reports, 2020, 3, e1271.	0.6	15
33	Molecular mechanisms of interplay between autophagy and metabolism in cancer. Life Sciences, 2020, 259, 118184.	2.0	8
34	Metabolic regulation in HPV associated head and neck squamous cell carcinoma. Life Sciences, 2020, 258, 118236.	2.0	17
35	Deciphering the SSR incidences across viral members of Coronaviridae family. Chemico-Biological Interactions, 2020, 331, 109226.	1.7	5
36	Encapsulated doxorubicin crystals influence lysolipid temperature-sensitive liposomes release and therapeutic efficacy in vitro and in vivo. Journal of Controlled Release, 2020, 328, 665-678.	4.8	14

#	Article	IF	CITATIONS
37	Peptide nanotubes self-assembled from leucine-rich alpha helical surfactant-like peptides. Chemical Communications, 2020, 56, 11977-11980.	2.2	10
38	All-in-one microfluidic assembly of insulin-loaded pH-responsive nano-in-microparticles for oral insulin delivery. Biomaterials Science, 2020, 8, 3270-3277.	2.6	28
39	Chain-End Modifications and Sequence Arrangements of Antimicrobial Peptoids for Mediating Activity and Nano-Assembly. Frontiers in Chemistry, 2020, 8, 416.	1.8	17
40	Self-Assembly of Minimal Peptoid Sequences. ACS Macro Letters, 2020, 9, 494-499.	2.3	21
41	Liposome-Templated Indocyanine Green J- Aggregates for <i>In Vivo</i> Near Infrared Imaging and Stable Photothermal Heating. Nanotheranostics, 2020, 4, 91-106.	2.7	36
42	Self-Assembly, Nematic Phase Formation, and Organocatalytic Behavior of a Proline-Functionalized Lipopeptide. ACS Applied Materials & Interfaces, 2020, 12, 13671-13679.	4.0	14
43	Plant-Derived Natural Biomolecule Picein Attenuates Menadione Induced Oxidative Stress on Neuroblastoma Cell Mitochondria. Antioxidants, 2020, 9, 552.	2.2	18
44	Amphipathic design dictates self-assembly, cytotoxicity and cell uptake of arginine-rich surfactant-like peptides. Journal of Materials Chemistry B, 2020, 8, 2495-2507.	2.9	30
45	Selective Antibacterial Activity and Lipid Membrane Interactions of Arginine-Rich Amphiphilic Peptides. ACS Applied Bio Materials, 2020, 3, 1165-1175.	2.3	40
46	Alzheimer's disease-like perturbations in HIV-mediated neuronal dysfunctions: understanding mechanisms and developing therapeutic strategies. Open Biology, 2020, 10, 200286.	1.5	19
47	Restructuring of Lipid Membranes by an Arginine-Capped Peptide Bolaamphiphile. Langmuir, 2019, 35, 1302-1311.	1.6	20
48	Self-Assembly, Tunable Hydrogel Properties, and Selective Anti-Cancer Activity of a Carnosine-Derived Lipidated Peptide. ACS Applied Materials & Interfaces, 2019, 11, 33573-33580.	4.0	42
49	Investigation of Precise Molecular Mechanistic Action of Tobacco-Associated Carcinogen `NNK´ Induced Carcinogenesis: A System Biology Approach. Genes, 2019, 10, 564.	1.0	7
50	Self-Assembly of a Catalytically Active Lipopeptide and Its Incorporation into Cubosomes. ACS Applied Bio Materials, 2019, 2, 3639-3647.	2.3	15
51	Preparation of membrane-mimicking lamellar structures by molecular confinement of hybrid nanocomposites. Chemical Communications, 2019, 55, 2900-2903.	2.2	8
52	RAGE Exacerbate Amyloid Beta (Aβ) Induced Alzheimer Pathology: A Systemic Overview. Environmental Science and Engineering, 2019, , 159-170.	0.1	3
53	Antibacterial polymer fibres by rosin compounding and melt-spinning. Materials Today Communications, 2019, 20, 100527.	0.9	15
54	Self-Assembly, Antimicrobial Activity, and Membrane Interactions of Arginine-Capped Peptide Bola-Amphiphiles. ACS Applied Bio Materials, 2019, 2, 2208-2218.	2.3	30

JANNE T RUOKOLAINEN

#	Article	IF	CITATIONS
55	Melanin production by tyrosinase activity on a tyrosine-rich peptide fragment and pH-dependent self-assembly of its lipidated analogue. Organic and Biomolecular Chemistry, 2019, 17, 4543-4553.	1.5	12
56	Cellulose elementary fibril orientation in the spruce S1-2 transition layer. Scientific Reports, 2019, 9, 3869.	1.6	15
57	Peptide-Stabilized Emulsions and Gels from an Arginine-Rich Surfactant-like Peptide with Antimicrobial Activity. ACS Applied Materials & Interfaces, 2019, 11, 9893-9903.	4.0	56
58	Self-Assembly of Lipopeptides Containing Short Peptide Fragments Derived from the Gastrointestinal Hormone PYY _{3–36} : From Micelles to Amyloid Fibrils. Journal of Physical Chemistry B, 2019, 123, 614-621.	1.2	20
59	Harmonic analysis of surface instability patterns on colloidal particles. Soft Matter, 2018, 14, 3387-3396.	1.2	18
60	On the scent of an animal skin: new evidence on Corded Ware mortuary practices in Northern Europe. Antiquity, 2018, 92, 118-131.	0.5	12
61	Ugi multicomponent reaction to prepare peptide–peptoid hybrid structures with diverse chemical functionalities. Polymer Chemistry, 2018, 9, 482-489.	1.9	30
62	Self-Assembly of Telechelic Tyrosine End-Capped PEO Star Polymers in Aqueous Solution. Biomacromolecules, 2018, 19, 167-177.	2.6	8
63	Effect of the Electron Transport Layer on the Interfacial Energy Barriers and Lifetime of R2R Printed Organic Solar Cell Modules. ACS Applied Energy Materials, 2018, 1, 5977-5985.	2.5	11
64	Conformation and Aggregation of Selectively PEGylated and Lipidated Gastric Peptide Hormone Human PYY _{3–36} . Biomacromolecules, 2018, 19, 4320-4332.	2.6	17
65	Multifunctional Stimuli-Responsive Cellulose Nanocrystals via Dual Surface Modification with Genetically Engineered Elastin-Like Polypeptides and Poly(acrylic acid). ACS Macro Letters, 2018, 7, 646-650.	2.3	21
66	The Effect of Lipidation on the Self-Assembly of the Gut-Derived Peptide Hormone PYY _{3–36} . Bioconjugate Chemistry, 2018, 29, 2296-2308.	1.8	31
67	Arginine-Containing Surfactant-Like Peptides: Interaction with Lipid Membranes and Antimicrobial Activity. Biomacromolecules, 2018, 19, 2782-2794.	2.6	54
68	Sequence length dependence in arginine/phenylalanine oligopeptides: Implications for self-assembly and cytotoxicity. Biophysical Chemistry, 2018, 233, 1-12.	1.5	29
69	Cellulose Elementary Fibrils Assemble into Helical Bundles in S ₁ Layer of Spruce Tracheid Wall. Biomacromolecules, 2017, 18, 374-378.	2.6	16
70	Self-assembly of ultra-small micelles from amphiphilic lipopeptoids. Chemical Communications, 2017, 53, 2178-2181.	2.2	33
71	Shear Alignment of Bola-Amphiphilic Arginine-Coated Peptide Nanotubes. Biomacromolecules, 2017, 18, 141-149.	2.6	42
72	Supramolecular Hydrogel Formation in a Series of Self-Assembling Lipopeptides with Varying Lipid Chain Length. Biomacromolecules, 2017, 18, 2013-2023.	2.6	28

#	Article	IF	CITATIONS
73	Hybrid membrane biomaterials from self-assembly in polysaccharide and peptide amphiphile mixtures: controllable structural and mechanical properties and antimicrobial activity. RSC Advances, 2017, 7, 8366-8375.	1.7	24
74	Chiral organocatalysts based on lipopeptide micelles for aldol reactions in water. Physical Chemistry Chemical Physics, 2017, 19, 1181-1189.	1.3	34
75	Effect of temperature, water content and free fatty acid on reverse micelle formation of phospholipids in vegetable oil. Colloids and Surfaces B: Biointerfaces, 2017, 160, 355-363.	2.5	50
76	The Origin of Hierarchical Structure Formation in Highly Grafted Symmetric Supramolecular Doubleâ€Comb Diblock Copolymers. Macromolecular Rapid Communications, 2017, 38, 1700288.	2.0	8
77	Minimizing structural deformation of gold nanorods in plasmon-enhanced dye-sensitized solar cells. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	3
78	Selfâ€Assembly of the Cyclic Lipopeptide Daptomycin: Spherical Micelle Formation Does Not Depend on the Presence of Calcium Chloride. ChemPhysChem, 2016, 17, 2118-2122.	1.0	32
79	Structural behaviour and gene delivery in complexes formed between DNA and arginine-containing peptide amphiphiles. Soft Matter, 2016, 12, 9158-9169.	1.2	23
80	Celluloseâ€Nanokristalle in hoher Ausbeute durch Abbau und Kristallisation von Cellulose mittels gasförmigem Chlorwasserstoff. Angewandte Chemie, 2016, 128, 14671-14674.	1.6	5
81	Hierarchical Layer Engineering Using Supramolecular Double omb Diblock Copolymers. Angewandte Chemie, 2016, 128, 13275-13279.	1.6	0
82	Hierarchical Layer Engineering Using Supramolecular Double omb Diblock Copolymers. Angewandte Chemie - International Edition, 2016, 55, 13081-13085.	7.2	18
83	Nanosheet Formation by an Anionic Surfactant-like Peptide and Modulation of Self-Assembly through Ionic Complexation. Langmuir, 2016, 32, 10387-10393.	1.6	23
84	Aqueous Self-Assembly of a Protein-Mimetic Ampholytic Block Copolypeptide. Macromolecules, 2016, 49, 5494-5501.	2.2	31
85	Degradation and Crystallization of Cellulose in Hydrogen Chloride Vapor for Highâ€Yield Isolation of Cellulose Nanocrystals. Angewandte Chemie - International Edition, 2016, 55, 14455-14458.	7.2	123
86	Stealth Amphiphiles: Self-Assembly of Polyhedral Boron Clusters. Langmuir, 2016, 32, 6713-6722.	1.6	69
87	Self-Assembly of the Toll-Like Receptor Agonist Macrophage-Activating Lipopeptide MALP-2 and of Its Constituent Peptide. Biomacromolecules, 2016, 17, 631-640.	2.6	23
88	Cation-sensitive compartmentalization in metallacarborane containing polymer nanoparticles. RSC Advances, 2016, 6, 9884-9892.	1.7	16
89	Self-Assembly of Telechelic Tyrosine End-Capped PEO and Poly(alanine) Polymers in Aqueous Solution. Biomacromolecules, 2016, 17, 1186-1197.	2.6	10
90	From Mannose to Small Amphiphilic Polyol: Perfect Linearity Leads To Spontaneous Aggregation. Crystal Growth and Design, 2016, 16, 655-661.	1.4	11

#	Article	IF	CITATIONS
91	When block copolymer self-assembly in hierarchically ordered honeycomb films depicts the breath figure process. Soft Matter, 2016, 12, 790-797.	1.2	24
92	A self-assembling fluorescent dipeptide conjugate for cell labelling. Colloids and Surfaces B: Biointerfaces, 2016, 137, 104-108.	2.5	15
93	Self-assembly of a dual functional bioactive peptide amphiphile incorporating both matrix metalloprotease substrate and cell adhesion motifs. Soft Matter, 2015, 11, 3115-3124.	1.2	20
94	Self-assembly pathway of peptide nanotubes formed by a glutamatic acid-based bolaamphiphile. Chemical Communications, 2015, 51, 11634-11637.	2.2	44
95	Self-Assembly and Collagen-Stimulating Activity of a Peptide Amphiphile Incorporating a Peptide Sequence from Lumican. Langmuir, 2015, 31, 4490-4495.	1.6	33
96	Self-assembly of the anti-fungal polyene amphotericin B into giant helically-twisted nanotapes. Chemical Communications, 2015, 51, 17680-17683.	2.2	2
97	Complexation-Driven Mutarotation in Poly(l-proline) Block Copolypeptides. Biomacromolecules, 2015, 16, 3686-3693.	2.6	3
98	Self-Assembled Arginine-Capped Peptide Bolaamphiphile Nanosheets for Cell Culture and Controlled Wettability Surfaces. Biomacromolecules, 2015, 16, 3180-3190.	2.6	49
99	Cannabinoid antagonist in nanostructured lipid carriers (NLCs): design, characterization and in vivo study. Materials Science and Engineering C, 2015, 48, 328-336.	3.8	43
100	Interactions between lipid-free apolipoprotein-AI and a lipopeptide incorporating the RGDS cell adhesion motif. Nanoscale, 2015, 7, 171-178.	2.8	2
101	Transmission electron microscopy for wood and fiber analysis – A Review. BioResources, 2015, 10, 6230-6261.	0.5	31
102	Molecular Engineering of Fracture Energy Dissipating Sacrificial Bonds Into Cellulose Nanocrystal Nanocomposites. Angewandte Chemie - International Edition, 2014, 53, 5049-5053.	7.2	49
103	Halogen-bonded mesogens direct polymer self-assemblies up to millimetre length scale. Nature Communications, 2014, 5, 4043.	5.8	66
104	Toll-like receptor agonist lipopeptides self-assemble into distinct nanostructures. Chemical Communications, 2014, 50, 15948-15951.	2.2	55
105	Compartmentalization in Hybrid Metallacarborane Nanoparticles Formed by Block Copolymers with Star-Like Architecture. ACS Macro Letters, 2014, 3, 1151-1155.	2.3	7
106	Wetting behaviour and direct observation of thermally responsive polystyrene- <i>block</i> -poly(<i>N</i> -isopropylacrylamide)- <i>block</i> -polystyrene electrospun fibres in aqueous environment. Polymer International, 2014, 63, 37-43.	1.6	8
107	Extended Self-Assembled Long Periodicity and Zig-Zag Domains from Helix–Helix Diblock Copolymer Poly(γ-benzyl- <scp>I</scp> -glutamate)- <i>block</i> -poly(<i>O</i> -benzyl- <scp>I</scp> -hydroxyproline). Biomacromolecules, 2014, 15, 3923-3930.	2.6	20
108	Self-Assembly of a Model Peptide Incorporating a Hexa-Histidine Sequence Attached to an Oligo-Alanine Sequence, and Binding to Gold NTA/Nickel Nanoparticles. Biomacromolecules, 2014, 15, 3412-3420.	2.6	24

#	Article	IF	CITATIONS
109	Tuning Chelation by the Surfactant-Like Peptide A ₆ H Using Predetermined pH Values. Biomacromolecules, 2014, 15, 591-598.	2.6	23
110	Alanine-rich amphiphilic peptide containing the RGD cell adhesion motif: a coating material for human fibroblast attachment and culture. Biomaterials Science, 2014, 2, 362-369.	2.6	40
111	Influence of elastase on alanine-rich peptide hydrogels. Biomaterials Science, 2014, 2, 867-874.	2.6	20
112	Accessibility of Cell Wall Lignin in Solvent Extraction of Ultrathin Spruce Wood Sections. ACS Sustainable Chemistry and Engineering, 2014, 2, 804-808.	3.2	8
113	Polypeptide-Based Aerosol Nanoparticles: Self-Assembly and Control of Conformation by Solvent and Thermal Annealing. Biomacromolecules, 2014, 15, 2607-2615.	2.6	11
114	Hierarchical Self-Assembly of Symmetric Supramolecular Double-Comb Diblock Copolymers: a Comb Density Study. Macromolecules, 2014, 47, 5913-5925.	2.2	26
115	An efficient and stable star-shaped plasticizer for starch: cyclic phosphazene with hydrogen bonding aminoethoxy ethanol side chains. Green Chemistry, 2014, 16, 4339-4350.	4.6	23
116	Out-of-plane orientation of cellulose elementary fibrils on spruce tracheid wall based on imaging with high-resolution transmission electron microscopy. Planta, 2014, 240, 565-573.	1.6	24
117	Delivery of Suramin as an Antiviral Agent through Liposomal Systems. ChemMedChem, 2014, 9, 933-939.	1.6	28
118	MAGBONS: Novel Magnetically Separable Carbonaceous Nanohybrids from Porous Polysaccharides. ChemCatChem, 2014, 6, 2847-2853.	1.8	8
119	Investigation of plasmonic gold–silica core–shell nanoparticle stability in dye-sensitized solar cell applications. Journal of Colloid and Interface Science, 2014, 427, 54-61.	5.0	24
120	Gels, xerogels and films of polynuclear iron(<scp>ii</scp>)–aminotriazole spin-crossover polymeric complexes. RSC Advances, 2014, 4, 60842-60852.	1.7	15
121	Five-fold symmetric penta-substituted corannulene with gelation properties and a liquid-crystalline phase. Chemical Communications, 2013, 49, 7204-7206.	2.2	29
122	Influence of particle size and shape on turbulent heat transfer characteristics and pressure losses in water-based nanofluids. International Journal of Heat and Mass Transfer, 2013, 61, 439-448.	2.5	69
123	Aluminum-Induced Photoluminescence Red Shifts in Core–Shell GaAs/Al _{<i>x</i>} Ga _{1–<i>x</i>} As Nanowires. Nano Letters, 2013, 13, 3581-3588.	4.5	23
124	Self-assembly of three bacterially-derived bioactive lipopeptides. Soft Matter, 2013, 9, 9572.	1.2	50
125	Controlled Hydrophobic Functionalization of Natural Fibers through Selfâ€Assembly of Amphiphilic Diblock Copolymer Micelles. ChemSusChem, 2013, 6, 1203-1208.	3.6	9
126	Photoinduced surface patterning of azobenzene-containing supramolecular dendrons, dendrimers and dendronized polymers. Optical Materials Express, 2013, 3, 711.	1.6	12

#	Article	IF	CITATIONS
127	Hybrid Nanospheres Formed by Intermixed Double-Hydrophilic Block Copolymer Poly(ethylene) Tj ETQq1 1 0.7843 2013, 46, 6881-6890.	14 rgBT / 2.2	Overlock 10 28
128	Interaction between a Cationic Surfactant-like Peptide and Lipid Vesicles and Its Relationship to Antimicrobial Activity. Langmuir, 2013, 29, 14246-14253.	1.6	54
129	Self-assembly of a model amphiphilic oligopeptide incorporating an arginine headgroup. Soft Matter, 2013, 9, 4794.	1.2	43
130	Janus-Dendrimer-Mediated Formation of Crystalline Virus Assemblies. ACS Macro Letters, 2013, 2, 720-724.	2.3	39
131	Processable polyaniline suspensions through in situ polymerization onto nanocellulose. European Polymer Journal, 2013, 49, 335-344.	2.6	107
132	Synthesis and biomimetic mineralization of <scp>l</scp> â€proline substituted polyphosphazenes as bulk and nanofiber. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1318-1327.	2.4	4
133	Thermo-responsive peptide-based triblock copolymer hydrogels. Soft Matter, 2013, 9, 4304.	1.2	18
134	Reversible helical unwinding transition of a self-assembling peptide amphiphile. Soft Matter, 2013, 9, 9290.	1.2	77
135	Hierarchical Self-Assembly in Supramolecular Double-Comb Diblock Copolymer Complexes. Macromolecules, 2013, 46, 500-517.	2.2	25
136	Self-assembly of PS-b-P4VP block copolymers of varying architectures in aerosol nanospheres. Soft Matter, 2013, 9, 1492-1499.	1.2	31
137	Electrostatic assembly of binary nanoparticle superlattices using protein cages. Nature Nanotechnology, 2013, 8, 52-56.	15.6	332
138	Nanofibrillated cellulose/carboxymethyl cellulose composite with improved wet strength. Cellulose, 2013, 20, 1459-1468.	2.4	71
139	Core–shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery I: fabrication. Journal of Materials Chemistry B, 2013, 1, 2358.	2.9	66
140	Tuning Self-Assembled Nanostructures Through Enzymatic Degradation of a Peptide Amphiphile. Langmuir, 2013, 29, 6665-6672.	1.6	44
141	Facile aqueous synthesis and stabilization of nearly monodispersed gold nanospheres by poly(<scp>L</scp> â€proline). Journal of Polymer Science Part A, 2013, 51, 1448-1456.	2.5	16
142	Double Gyroid Network Morphology in Supramolecular Diblock Copolymer Complexes. Macromolecules, 2012, 45, 3503-3512.	2.2	47
143	Hierarchical Structures of Hydrogen-Bonded Liquid-Crystalline Side-Chain Diblock Copolymers in Nanoparticles. Macromolecules, 2012, 45, 8743-8751.	2.2	17
144	Thermally Sensitive Block Copolymer Particles Prepared via Aerosol Flow Reactor Method: Morphological Characterization and Behavior in Water. Macromolecules, 2012, 45, 8401-8411.	2.2	18

#	Article	IF	CITATIONS
145	Hierarchical Structures in Lamellar Hydrogen Bonded LC Side Chain Diblock Copolymers. Macromolecules, 2012, 45, 7091-7097.	2.2	39
146	Microstructural and Swelling Properties of Ca and Na Montmorillonite: (In Situ) Observations with Cryo-TEM and SAXS. Journal of Physical Chemistry C, 2012, 116, 7596-7601.	1.5	71
147	Thermoreversible Gel–Sol Behavior of Rod–Coil–Rod Peptide-Based Triblock Copolymers. Macromolecules, 2012, 45, 1982-1990.	2.2	53
148	Comparison of Multilayer Formation Between Different Cellulose Nanofibrils and Cationic Polymers. Journal of Colloid and Interface Science, 2012, 373, 84-93.	5.0	47
149	Performance and early applications of a versatile double aberration-corrected JEOL-2200FS FEG TEM/STEM at Aalto University. Micron, 2012, 43, 545-550.	1.1	13
150	Photoresponsive Reversible Aggregation and Dissolution of Rod–Coil Polypeptide Diblock Copolymers. Macromolecules, 2011, 44, 4569-4573.	2.2	124
151	Colloidal Ionic Assembly between Anionic Native Cellulose Nanofibrils and Cationic Block Copolymer Micelles into Biomimetic Nanocomposites. Biomacromolecules, 2011, 12, 2074-2081.	2.6	78
152	Dual-responsive and super absorbing thermally cross-linked hydrogel based on methacrylate substituted polyphosphazene. Soft Matter, 2011, 7, 4414.	1.2	41
153	Polyelectrolyte Brushes Grafted from Cellulose Nanocrystals Using Cu-Mediated Surface-Initiated Controlled Radical Polymerization. Biomacromolecules, 2011, 12, 2997-3006.	2.6	155
154	Strong Nanocomposite Reinforcement Effects in Polyurethane Elastomer with Low Volume Fraction of Cellulose Nanocrystals. Macromolecules, 2011, 44, 4422-4427.	2.2	365
155	Enhanced mechanical and electrical properties of polyimide film by graphene sheets via in situ polymerization. Polymer, 2011, 52, 5237-5242.	1.8	213
156	Graphene/cellulose nanocomposite paper with high electrical and mechanical performances. Journal of Materials Chemistry, 2011, 21, 13991.	6.7	240
157	Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose, 2011, 18, 775-786.	2.4	257
158	Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose, 2011, 18, 1201.	2.4	83
159	The behaviour of cationic NanoFibrillar Cellulose in aqueous media. Cellulose, 2011, 18, 1213-1226.	2.4	123
160	In situ polymerized nanocomposites: Polystyrene/CNT and Poly(methyl methacrylate)/CNT composites. Composites Science and Technology, 2011, 71, 900-907.	3.8	85
161	Lewis acidic polypropylene for compatibilization of polypropylene/microsilica composites. Polymer Composites, 2011, 32, 1835-1841.	2.3	2
162	Nanoporous Network Channels from Selfâ€Assembled Triblock Copolymer Supramolecules. Macromolecular Rapid Communications, 2011, 32, 366-370.	2.0	37

#	Article	IF	CITATIONS
163	Photoswitchable Superabsorbency Based on Nanocellulose Aerogels. Advanced Functional Materials, 2011, 21, 510-517.	7.8	240
164	Selfâ€Assembled Polymeric Supramolecular Frameworks. Angewandte Chemie - International Edition, 2011, 50, 2516-2520.	7.2	39
165	In situ polymerization of methyl methacrylate/multi-walled carbon nanotube composites using cationic stearyl methacrylate copolymers as dispersants. European Polymer Journal, 2011, 47, 873-881.	2.6	16
166	Controlling Hierarchical Self-Assembly in Supramolecular Tailed-Dendron Systems. Macromolecules, 2010, 43, 4752-4760.	2.2	15
167	Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose, 2010, 17, 1005-1020.	2.4	299

168

#	Article	IF	CITATIONS
181	Ultra-thin films of cationic amphiphilic poly(2-(dimethylamino)ethyl methacrylate) based block copolymers as surface wettability modifiers. Polymer, 2009, 50, 5250-5261.	1.8	14
182	Random Copolymer Effect in Self-Assembled Hydrogen-Bonded P(S- <i>co</i> -4VP)(PDP) Side-Chain Polymers. Macromolecules, 2009, 42, 2009-2014.	2.2	15
183	Effect of Double-Tailed Surfactant Architecture on the Conformation, Self-Assembly, and Processing in Polypeptideâ [°] Surfactant Complexes. Biomacromolecules, 2009, 10, 2787-2794.	2.6	13
184	Miktoarm stars of poly(ethylene oxide) and poly(dimethylaminoethyl methacrylate): manipulation of micellization by temperature and light. Soft Matter, 2009, 5, 1812.	1.2	75
185	Solid state nanofibers based on self-assemblies: from cleaving from self-assemblies to multilevel hierarchical constructs. Faraday Discussions, 2009, 143, 95.	1.6	34
186	Stimuli-Responsive Nanoparticles Based on Interaction of Metallacarborane with Poly(ethylene oxide). Macromolecules, 2009, 42, 4829-4837.	2.2	40
187	Frustrated self-assembly of dendron and dendrimer-based supramolecular liquid crystals. Soft Matter, 2009, 5, 92-97.	1.2	43
188	Integration of single-walled carbon nanotubes into polymer films by thermo-compression. Chemical Engineering Journal, 2008, 136, 409-413.	6.6	43
189	Fibrillar Constructs from Multilevel Hierarchical Selfâ€Assembly of Discotic and Calamitic Supramolecular Motifs. Advanced Functional Materials, 2008, 18, 2041-2047.	7.8	32
190	SAXS study of the lamellar–cylindrical transition in the PI-b-P2VP(OG) supramolecules' system. Polymer, 2008, 49, 2669-2677.	1.8	11
191	Poly[2,7-(9,9-dihexylfluorene)]- <i>block</i> -poly(2-vinylpyridine) Rodâ^'Coil and Coilâ^'Rodâ^'Coil Block Copolymers: Synthesis, Morphology and Photophysical Properties in Methanol/THF Mixed Solvents. Macromolecules, 2008, 41, 8759-8769.	2.2	60
192	Organic memory using [6,6]-phenyl-C61butyric acid methyl ester: morphology, thickness and concentration dependence studies. Nanotechnology, 2008, 19, 035203.	1.3	39
193	Direct Imaging of Nanoscopic Plastic Deformation below Bulk Tg and Chain Stretching in Temperature-Responsive Block Copolymer Hydrogels by Cryo-TEM. Macromolecules, 2008, 41, 3243-3249.	2.2	29
194	Thermo-reversible protein fibrillar hydrogels as cell scaffolds. Faraday Discussions, 2008, 139, 71.	1.6	50
195	Thermoreversible lysozyme hydrogels: properties and an insight into the gelation pathway. Soft Matter, 2008, 4, 1313.	1.2	51
196	Evidence of PPII-like Helical Conformation and Glass Transition in a Self-Assembled Solid-State Polypeptideâ^'Surfactant Complex: Poly(<scp>l</scp> -histidine)/Docylbenzenesulfonic Acid. Biomacromolecules, 2008, 9, 1390-1397.	2.6	12
197	Self-Assembly of Polypeptide/Ï€-Conjugated Polymer/Polypeptide Triblock Copolymers in Rodâ^'Rodâ ar Rodâ ar Roda ar R	2.2	74
198	Structureâ^'Properties Relationship in Proton Conductive Sulfonated Polystyreneâ^'Polymethyl Methacrylate Block Copolymers (sPSâ^'PMMA). Macromolecules, 2008, 41, 8130-8137.	2.2	62

#	Article	IF	CITATIONS
199	Phase Behavior of Solvent Vapor Annealed Thin Films of PS- <i>b</i> -P4VP(PDP) Supramolecules. Macromolecules, 2008, 41, 3199-3208.	2.2	120
200	Structural and Conformational Transformations in Self-Assembled Polypeptideâ^'Surfactant Complexes. Macromolecules, 2008, 41, 866-872.	2.2	34
201	Imaging and Elemental Analysis of Polymer/Fullerene Nanocomposite Memory Devices. Materials Research Society Symposia Proceedings, 2008, 1071, 1.	0.1	0
202	MONO AND BIMODAL POROSITY BY PYROLYSIS OF BLOCK COPOLYMER-PHENOLIC RESIN COMPLEXES. , 2008,		0
203	Functional Columnar Liquid Crystalline Phases From Ionic Complexes of Dendronized Polymers and Sulfate Alkyl Tails. Macromolecular Symposia, 2008, 270, 58-64.	0.4	8
204	Real Space Imaging and Molecular Packing of Dendronized Polymerâ^'Lipid Supramolecular Complexes. Macromolecules, 2007, 40, 7609-7616.	2.2	53
205	Architecturally Induced Multiresponsive Vesicles from Well-Defined Polypeptides. Formation of Gene Vehicles. Biomacromolecules, 2007, 8, 2173-2181.	2.6	140
206	Tailoring of the hierarchical structure within electrospun fibers due to supramolecular comb-coil block copolymers: polystyrene-block-poly(4-vinyl pyridine) plasticized by hydrogen bonded pentadecylphenol. Soft Matter, 2007, 3, 978.	1.2	55
207	Weakly Segregated Smectic C Lamellar Clusters in Blends of Rods and Rodâ^Coil Block Copolymers. Macromolecules, 2007, 40, 3277-3286.	2.2	56
208	Functional Carbon Nanoflakes with High Aspect Ratio by Pyrolysis of Cured Templates of Block Copolymer and Phenolic Resin. Chemistry of Materials, 2007, 19, 3093-3095.	3.2	6
209	Self-Assembly of Poly(diethylhexyloxy- <i>p</i> -phenylenevinylene)- <i>b</i> - poly(4-vinylpyridine) Rodâ^'Coil Block Copolymer Systems. Macromolecules, 2007, 40, 6990-6997.	2.2	111
210	Phase Behavior and Temperature-Responsive Molecular Filters Based on Self-Assembly of Polystyrene- <i>block</i> -poly(<i>N</i> -isopropylacrylamide)- <i>block</i> -polystyrene. Macromolecules, 2007, 40, 5827-5834.	2.2	149
211	Hierarchical Porosity in Self-Assembled Polymers: Post-Modification of Block Copolymer–Phenolic Resin Complexes by Pyrolysis Allows the Control of Micro- and Mesoporosity. Advanced Functional Materials, 2007, 17, 183-190.	7.8	104
212	Supramolecular Materials Based On Hydrogen-Bonded Polymers. Advances in Polymer Science, 2007, , 113-177.	0.4	156
213	Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels. Biomacromolecules, 2007, 8, 1934-1941.	2.6	1,684
214	Formation of Stable Ag-Nanoparticle Aggregates Induced by Dithiol Cross-Linking. Journal of Physical Chemistry B, 2006, 110, 12954-12958.	1.2	32
215	Self-Assembled Structures in Diblock Copolymers with Hydrogen-Bonded Amphiphilic Plasticizing Compounds. Macromolecules, 2006, 39, 9327-9336.	2.2	160
216	Deformation and Fracture of Lamellar and Cylindrical Block Copolymers with Unentangled Glassy Matrices:Â Effect of Chain Architecture and Microdomain Orientation. Macromolecules, 2006, 39, 4480-4492.	2.2	9

#	Article	IF	CITATIONS
217	Control of Self-Assembly by Charge-Transfer Complexation between C60Fullerene and Electron Donating Units of Block Copolymers. Macromolecules, 2006, 39, 7648-7653.	2.2	98
218	Hierarchical Ionic Self-Assembly of Rodâ ´'Comb Block Copolypeptideâ ´'Surfactant Complexes. Biomacromolecules, 2006, 7, 3379-3384.	2.6	69
219	Functional Porous Structures Based on the Pyrolysis of Cured Templates of Block Copolymer and Phenolic Resin. Advanced Materials, 2006, 18, 201-205.	11.1	145
220	Comment on "Memory Effect and Negative Differential Resistance by Electrode-Induced Two-Dimensional Single-Electron Tunneling in Molecular and Organic Electronic Devicesâ€: Advanced Materials, 2006, 18, 2805-2806.	11.1	8
221	Semicrystalline thermoplastic elastomeric polyolefins: Advances through catalyst development and macromolecular design. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15327-15332.	3.3	120
222	Towards Internal Structuring of Electrospun Fibers by Hierarchical Self-Assembly of Polymeric Comb-Shaped Supramolecules. Advanced Materials, 2005, 17, 1048-1052.	11.1	70
223	Properties of polypropylene/aluminum trihydroxide composites containing nanosized organoclay. Polymer Engineering and Science, 2005, 45, 1568-1575.	1.5	35
224	Electrical Conductivity Transitions and Self-Assembly in Comb-Shaped Complexes of Polyaniline Based on Crystallization and Melting of the Supramolecular Side Chains. Macromolecules, 2005, 38, 7793-7797.	2.2	15
225	Morphology and Thermodynamic Behavior of Syndiotactic Polypropyleneâ~'Poly(ethylene-co-propylene) Block Polymers Prepared by Living Olefin Polymerization. Macromolecules, 2005, 38, 851-860.	2.2	68
226	Self-assembled polymeric solid films with temperature-induced large and reversible photonic-bandgap switching. Nature Materials, 2004, 3, 872-876.	13.3	219
227	Structure and Morphology of Polyamide 66 and Oligomeric Phenolic Resin Blends:Â Molecular Modeling and Experimental Investigations. Chemistry of Materials, 2004, 16, 3032-3039.	3.2	28
228	Self-Assembly of Supramolecules Consisting of Octyl Gallate Hydrogen Bonded to Polyisoprene-block-poly(vinylpyridine) Diblock Copolymers. Macromolecules, 2004, 37, 9517-9524.	2.2	49
229	On the Role of Block Copolymers in Self-Assembly of Dense Colloidal Polymeric Systems. Langmuir, 2003, 19, 8144-8147.	1.6	20
230	Structural Hierarchy in Flow-Aligned Hexagonally Self-Organized Microphases with Parallel Polyelectrolytic Structures. Macromolecules, 2003, 36, 9437-9442.	2.2	33
231	High Internal Phase Polymeric Emulsions by Self-Assembly of Colloidal Systems. Macromolecules, 2003, 36, 4466-4471.	2.2	43
232	Amphiphiles Coordinated to Block Copolymers as a Template for Mesoporous Materials. Macromolecules, 2003, 36, 3986-3991.	2.2	57
233	Adjustment of Block Copolymer Nanodomain Sizes at Lattice Defect Sites. Macromolecules, 2003, 36, 8712-8716.	2.2	58
234	Processible conducting nanoscale cylinders due to self-organized polyaniline supramolecules. Synthetic Metals, 2003, 137, 881-882.	2.1	9

#	Article	IF	CITATIONS
235	Templating Organic Semiconductors via Self-Assembly of Polymer Colloids. Science, 2003, 299, 1872-1874.	6.0	175
236	Zinc and mechanical prowess in the jaws of Nereis, a marine worm. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9144-9149.	3.3	166
237	Polymeric One-Dimensional Reflectors Based on Self-Organization of Comb-Shaped Supramolecules. Materials Research Society Symposia Proceedings, 2003, 775, 6181.	0.1	1
238	Self-organized nanostructures of poly(4â€vinylpyridine), polyaniline and polyamides due to metal complexation. Macromolecular Symposia, 2002, 186, 87-92.	0.4	8
239	Chain Architecture Effects on Deformation and Fracture of Block Copolymers with Unentangled Matrices. Macromolecules, 2002, 35, 2157-2166.	2.2	67
240	Effect of Thermal History and Microdomain Orientation on Deformation and Fracture Properties of Poly(cyclohexylethylene)â^'Polyethylene Triblock Copolymers Containing Cylindrical PE Domains. Macromolecules, 2002, 35, 9391-9402.	2.2	46
241	Micro- and Macrophase Separation in Phenolic Resol Resin/PEO-PPO-PEO Block Copolymer Blends: Effect of Hydrogen-Bonded PEO Length. Macromolecular Chemistry and Physics, 2002, 203, 388-392.	1.1	49
242	Self-Organized Thermosets:  Blends of Hexamethyltetramine Cured Novolac with Poly(2-vinylpyridine)-block-poly(isoprene). Macromolecules, 2001, 34, 3046-3049.	2.2	110
243	Self-organized cross-linked phenolic thermosets: thermal and dynamic mechanical properties of novolac/block copolymer blends. Polymer, 2001, 42, 9481-9486.	1.8	61
244	Comb-Shaped Supramolecules of Emeraldine Base Form of Polyaniline Due to Coordination with Zinc Dodecyl Benzenesulfonate and Their Plasticized Self-Organized Structures. Macromolecules, 2000, 33, 9272-9276.	2.2	54
245	Nanoscale Conducting Cylinders Based on Self-Organization of Hydrogen-Bonded Polyaniline Supramolecules. Macromolecules, 2000, 33, 8671-8675.	2.2	97
246	Supramolecular Polymeric Materials with Hierarchical Structure-Within-Structure Morphologies. Advanced Materials, 1999, 11, 777-780.	11.1	245
247	Supramolecular Polymeric Materials with Hierarchical Structure-Within-Structure Morphologies. , 1999, 11, 777.		3
248	Order ―disorder transitions in combâ€like polymerâ€surfactant systems involving hydrogen bonds. Macromolecular Symposia, 1997, 114, 229-236.	0.4	8
249	Thermoreversible Gels of Polyaniline:  Viscoelastic and Electrical Evidence on Fusible Network Structures. Macromolecules, 1997, 30, 4064-4072.	2.2	68
250	Orderâ^'Disorder Transition in Comblike Block Copolymers Obtained by Hydrogen Bonding between Homopolymers and End-Functionalized Oligomers:Â Poly(4-vinylpyridine)â^'Pentadecylphenol. Macromolecules, 1997, 30, 2002-2007.	2.2	100
251	Critical Interaction Strength for Surfactant-Induced Mesomorphic Structures in Polymerâ°'Surfactant Systems. Macromolecules, 1996, 29, 6621-6628.	2.2	97
252	Surfactant induced mesomorphic behaviour of flexible polymers. Macromolecular Symposia, 1996, 112, 191-198.	0.4	10

#	Article	IF	CITATIONS
253	Mesomorphic Structures in Flexible Polymerâ^'Surfactant Systems Due to Hydrogen Bonding:Â Poly(4-vinylpyridine)â^'Pentadecylphenol. Macromolecules, 1996, 29, 3409-3415.	2.2	230
254	Poly(4-vinyl pyridine)/Zinc Dodecyl Benzene Sulfonate Mesomorphic State Due to Coordination Complexation. Macromolecules, 1995, 28, 7779-7784.	2.2	139
255	Mesomorphic State of Poly(vinylpyridine)-Dodecylbenzenesulfonic Acid Complexes in Bulk and in Xylene Solution. Macromolecules, 1995, 28, 7088-7094.	2.2	177