Edgars Liepinsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8240941/publications.pdf

Version: 2024-02-01

185998 214527 2,678 87 28 47 citations h-index g-index papers 87 87 87 3184 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Rodent Heart and Brain Tissue Preparation for Digital Macro Photography after Ischemia-reperfusion. Journal of Visualized Experiments, 2022, , .	0.2	1
2	Fasting-Mimicking Diet Reduces Trimethylamine N-Oxide Levels and Improves Serum Biochemical Parameters in Healthy Volunteers. Nutrients, 2022, 14, 1093.	1.7	9
3	Protective Effects of Meldonium in Experimental Models of Cardiovascular Complications with a Potential Application in COVID-19. International Journal of Molecular Sciences, 2022, 23, 45.	1.8	4
4	Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacological Reviews, 2022, 74, 506-551.	7.1	106
5	Modelâ€Informed Drug Development for Antimicrobials: Translational PK and PK/PD Modeling to Predict an Efficacious Human Dose for Apramycin. Clinical Pharmacology and Therapeutics, 2021, 109, 1063-1073.	2.3	20
6	Energy substrate metabolism and mitochondrial oxidative stress in cardiac ischemia/reperfusion injury. Free Radical Biology and Medicine, 2021, 165, 24-37.	1.3	76
7	Long-Chain Acylcarnitines Decrease the Phosphorylation of the Insulin Receptor at Tyr1151 Through a PTP1B-Dependent Mechanism. International Journal of Molecular Sciences, 2021, 22, 6470.	1.8	7
8	Inhibition of Fatty Acid Metabolism Increases EPA and DHA Levels and Protects against Myocardial Ischaemia-Reperfusion Injury in Zucker Rats. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-13.	1.9	3
9	Low cardiac content of long-chain acylcarnitines in TMLHE knockout mice prevents ischaemia-reperfusion-induced mitochondrial and cardiac damage. Free Radical Biology and Medicine, 2021, 177, 370-380.	1.3	8
10	Antibacterial activity of apramycin at acidic pH warrants wide therapeutic window in the treatment of complicated urinary tract infections and acute pyelonephritis. EBioMedicine, 2021, 73, 103652.	2.7	15
11	Altered mitochondrial metabolism in the insulinâ€resistant heart. Acta Physiologica, 2020, 228, e13430.	1.8	56
12	Inhibition of CPT2 exacerbates cardiac dysfunction and inflammation in experimental endotoxaemia. Journal of Cellular and Molecular Medicine, 2020, 24, 11903-11911.	1.6	11
13	Metformin decreases bacterial trimethylamine production and trimethylamine N-oxide levels in db/db mice. Scientific Reports, 2020, 10, 14555.	1.6	22
14	Rats with congenital hydronephrosis show increased susceptibility to renal ischemiaâ€reperfusion injury. Physiological Reports, 2020, 8, e14638.	0.7	2
15	Empagliflozin Protects Cardiac Mitochondrial Fatty Acid Metabolism in a Mouse Model of Diet-Induced Lipid Overload. Cardiovascular Drugs and Therapy, 2020, 34, 791-797.	1.3	20
16	Cardiac metabolism as a driver and therapeutic target of myocardial infarction. Journal of Cellular and Molecular Medicine, 2020, 24, 5937-5954.	1.6	101
17	Lowâ€intensity exercise stimulates bioenergetics and increases fat oxidation in mitochondria of blood mononuclear cells from sedentary adults. Physiological Reports, 2020, 8, e14489.	0.7	22
18	Excretion of the Polymyxin Derivative NAB739 in Murine Urine. Antibiotics, 2020, 9, 143.	1.5	1

#	Article	IF	Citations
19	Decreases in Circulating Concentrations of Long-Chain Acylcarnitines and Free Fatty Acids During the Glucose Tolerance Test Represent Tissue-Specific Insulin Sensitivity. Frontiers in Endocrinology, 2019, 10, 870.	1.5	23
20	Mitochondrial Function in the Kidney and Heart, but Not the Brain, is Mainly Altered in an Experimental Model of Endotoxaemia. Shock, 2019, 52, e153-e162.	1.0	16
21	Letter to the Editor: "Serum Carnitine Metabolites and Incident Type 2 Diabetes Mellitus in Patients With Suspected Stable Angina Pectoris― Journal of Clinical Endocrinology and Metabolism, 2018, 103, 4037-4038.	1.8	3
22	Loop diuretics decrease the renal elimination rate and increase the plasma levels of trimethylamineâ€Nâ€oxide. British Journal of Clinical Pharmacology, 2018, 84, 2634-2644.	1,1	13
23	Decrease in Longâ€Chain Acylcarnitine Tissue Content Determines the Duration of and Correlates with the Cardioprotective Effect of Methylâ€≺scp>GBB. Basic and Clinical Pharmacology and Toxicology, 2017, 121, 106-112.	1.2	3
24	Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria. Toxicology Letters, 2017, 267, 32-38.	0.4	83
25	Carnitine and γâ€Butyrobetaine Stimulate Elimination of Meldonium due to Competition for OCTN2â€mediated Transport. Basic and Clinical Pharmacology and Toxicology, 2017, 120, 450-456.	1.2	12
26	S -phenylpiracetam, a selective DAT inhibitor, reduces body weight gain without influencing locomotor activity. Pharmacology Biochemistry and Behavior, 2017, 160, 21-29.	1.3	4
27	Acute and longâ€term administration of palmitoylcarnitine induces muscleâ€specific insulin resistance in mice. BioFactors, 2017, 43, 718-730.	2.6	25
28	Plasma acylcarnitine concentrations reflect the acylcarnitine profile in cardiac tissues. Scientific Reports, 2017, 7, 17528.	1.6	112
29	Diabetes is Associated with Higher Trimethylamine N-oxide Plasma Levels. Experimental and Clinical Endocrinology and Diabetes, 2016, 124, 251-256.	0.6	175
30	Long-chain acylcarnitines determine ischaemia/reperfusion-induced damage in heart mitochondria. Biochemical Journal, 2016, 473, 1191-1202.	1.7	77
31	Response to comment by Sergei V. Jargin: "Meldonium (Mildronate): primum nĐ¾n nocereâ€. Pharmacological Research, 2016, 114, 295-296.	3.1	4
32	The unusual pharmacokinetics of meldonium: Implications for doping. Pharmacological Research, 2016, 111, 100.	3.1	12
33	Pharmacological effects of meldonium: Biochemical mechanisms and biomarkers of cardiometabolic activity. Pharmacological Research, 2016, 113, 771-780.	3.1	68
34	The neuroprotective effects of R-phenibut after focal cerebral ischemia. Pharmacological Research, 2016, 113, 796-801.	3.1	13
35	Decreased acylcarnitine content improves insulin sensitivity in experimental mice models of insulin resistance. Pharmacological Research, 2016, 113, 788-795.	3.1	34
36	Risks and Benefits of Carnitine Supplementation in Diabetes. Experimental and Clinical Endocrinology and Diabetes, 2015, 123, 95-100.	0.6	16

#	Article	IF	CITATIONS
37	Methyl- \hat{l}^3 -butyrobetaine decreases levels of acylcarnitines and attenuates the development of atherosclerosis. Vascular Pharmacology, 2015, 72, 101-107.	1.0	13
38	Structure and Function of CutC Choline Lyase from Human Microbiota Bacterium Klebsiella pneumoniae. Journal of Biological Chemistry, 2015, 290, 21732-21740.	1.6	70
39	Determination of trimethylamineâ€ <i>N</i> â€oxide in combination with <scp>l</scp> â€carnitine and <i>î³</i> â€butyrobetaine in human plasma by UPLC/MS/MS. Biomedical Chromatography, 2015, 29, 1670-1674.	0.8	31
40	Inhibition of Lâ€carnitine biosynthesis and transport by methylâ€Î³â€butyrobetaine decreases fatty acid oxidation and protects against myocardial infarction. British Journal of Pharmacology, 2015, 172, 1319-1332.	2.7	24
41	Selective inhibition of OCTN2 is more effective than inhibition of gamma-butyrobetaine dioxygenase to decrease the availability of l-carnitine and to reduce myocardial infarct size. Pharmacological Research, 2014, 85, 33-38.	3.1	15
42	Mildronate, the inhibitor of l-carnitine transport, induces brain mitochondrial uncoupling and protects against anoxia-reoxygenation. European Journal of Pharmacology, 2014, 723, 55-61.	1.7	19
43	The heart is better protected against myocardial infarction in the fed state compared to the fasted state. Metabolism: Clinical and Experimental, 2014, 63, 127-136.	1.5	56
44	Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation. Life Sciences, 2014, 117, 84-92.	2.0	76
45	A cross-sectional survey of urinary iodine status in Latvia. Medicina (Lithuania), 2014, 50, 124-129.	0.8	14
46	Targeting Carnitine Biosynthesis: Discovery of New Inhibitors against \hat{I}^3 -Butyrobetaine Hydroxylase. Journal of Medicinal Chemistry, 2014, 57, 2213-2236.	2.9	41
47	Long-chain acylcarnitine content determines the pattern of energy metabolism in cardiac mitochondria. Molecular and Cellular Biochemistry, 2014, 395, 1-10.	1.4	44
48	Magnesium nitrate attenuates blood pressure rise in SHR rats. Magnesium Research, 2014, 27, 16-24.	0.4	8
49	Meldonium decreases the dietâ€increased plasma levels of trimethylamine Nâ€oxide, a metabolite associated with atherosclerosis. Journal of Clinical Pharmacology, 2013, 53, 1095-1098.	1.0	48
50	Troubleshooting digital macro photography for image acquisition and the analysis of biological samples. Journal of Pharmacological and Toxicological Methods, 2013, 67, 98-106.	0.3	14
51	Association of reduced glyoxalase 1 activity and painful peripheral diabetic neuropathy in type 1 and 2 diabetes mellitus patients. Journal of Diabetes and Its Complications, 2013, 27, 262-267.	1.2	43
52	Activated peroxisomal fatty acid metabolism improves cardiac recovery in ischemia-reperfusion. Naunyn-Schmiedeberg's Archives of Pharmacology, 2013, 386, 541-550.	1.4	34
53	High I-carnitine concentrations do not prevent late diabetic complications in type 1 and 2 diabetic patients. Nutrition Research, 2012, 32, 320-327.	1.3	9
54	Seasonal Iodine Deficiency in Latvian School Children. Thyroid, 2012, 22, 1088-1089.	2.4	17

#	Article	IF	Citations
55	Glyoxalase 1 and glyoxalase 2 activities in blood and neuronal tissue samples from experimental animal models of obesity and type 2 diabetes mellitus. Journal of Physiological Sciences, 2012, 62, 469-478.	0.9	17
56	Risk prediction system for pharmacological problems. Automatic Control and Computer Sciences, 2012, 46, 57-65.	0.4	1
57	A short-term high-dose administration of sodium pivalate impairs pyruvate metabolism without affecting cardiac function. Cardiovascular Toxicology, 2012, 12, 298-303.	1.1	5
58	The Cardioprotective Effect of Mildronate is Diminished After Co-Treatment With (scp > 1 < 1/scp > -Carnitine. Journal of Cardiovascular Pharmacology and Therapeutics, 2012, 17, 215-222.	1.0	44
59	The sensorimotor and cognitive deficits in rats following 90- and 120-min transient occlusion of the middle cerebral artery. Journal of Neuroscience Methods, 2012, 208, 197-204.	1.3	28
60	Administration of L-carnitine and mildronate improves endothelial function and decreases mortality in hypertensive Dahl rats. Pharmacological Reports, 2011, 63, 752-762.	1.5	19
61	Mildronate treatment improves functional recovery following middle cerebral artery occlusion in rats. Behavioural Brain Research, 2011, 222, 26-32.	1.2	29
62	Mildronate treatment alters $\langle i \rangle \hat{l}^3 \langle i \rangle$ -butyrobetaine and $\langle scp \rangle \langle scp \rangle$ -carnitine concentrations in healthy volunteers. Journal of Pharmacy and Pharmacology, 2011, 63, 1195-1201.	1.2	42
63	Anti-diabetic effects of mildronate alone or in combination with metformin in obese Zucker rats. European Journal of Pharmacology, 2011, 658, 277-283.	1.7	27
64	Flow cytometric analysis of glyoxalaseâ€1 expression in human leukocytes. Cell Biochemistry and Function, 2011, 29, 171-174.	1.4	6
65	Mildronate exerts acute anticonvulsant and antihypnotic effects. Behavioural Pharmacology, 2010, 21, 548-555.	0.8	17
66	The anti-inflammatory and antinociceptive effects of NF-κB inhibitory guanidine derivative ME10092. International Immunopharmacology, 2010, 10, 455-460.	1.7	22
67	Crystal structure of human gamma-butyrobetaine hydroxylase. Biochemical and Biophysical Research Communications, 2010, 398, 634-639.	1.0	30
68	Myocardial Infarct Size-Limiting and Anti-Arrhythmic Effects of Mildronate Orotate in the Rat Heart. Cardiovascular Drugs and Therapy, 2009, 23, 281-288.	1.3	25
69	Effects of Longâ€√erm Mildronate Treatment on Cardiac and Liver Functions in Rats. Basic and Clinical Pharmacology and Toxicology, 2009, 105, 387-394.	1.2	27
70	Protective effects of mildronate in an experimental model of type 2 diabetes in Gotoâ€Kakizaki rats. British Journal of Pharmacology, 2009, 157, 1549-1556.	2.7	63
71	Metabolomic studies of experimental diabetic urine samples by 1H NMR spectroscopy and LC/MS method. Chemometrics and Intelligent Laboratory Systems, 2009, 97, 11-17.	1.8	19
72	Inhibition of carnitine acetyltransferase by mildronate, a regulator of energy metabolism. Journal of Enzyme Inhibition and Medicinal Chemistry, 2009, 24, 1269-1275.	2.5	27

#	Article	IF	CITATIONS
73	Mildronate, a Regulator of Energy Metabolism, Reduces Atherosclerosis in apoE/LDLR ^{–/–} Mice. Pharmacology, 2009, 83, 287-293.	0.9	27
74	Quantitative analysis of phenibut in rat brain tissue extracts by liquid chromatography–tandem mass spectrometry. Biomedical Chromatography, 2008, 22, 1321-1324.	0.8	8
75	Comparative pharmacological activity of optical isomers of phenibut. European Journal of Pharmacology, 2008, 583, 128-134.	1.7	64
76	Mildronate decreases carnitine availability and up-regulates glucose uptake and related gene expression in the mouse heart. Life Sciences, 2008, 83, 613-619.	2.0	60
77	Effect of inhibiting carnitine biosynthesis on male rat sexual performance. Physiology and Behavior, 2008, 95, 341-347.	1.0	26
78	Functional Evaluation of THIQ, a Melanocortin 4 Receptor Agonist, in Models of Food Intake and Inflammation. Basic and Clinical Pharmacology and Toxicology, 2007, 101, 416-420.	1.2	18
79	The MC3 receptor binding affinity of melanocortins correlates with the nitric oxide production inhibition in mice brain inflammation model. Peptides, 2006, 27, 1443-1450.	1.2	21
80	Mildronate, an Inhibitor of Carnitine Biosynthesis, Induces an Increase in Gamma-Butyrobetaine Contents and Cardioprotection in Isolated Rat Heart Infarction. Journal of Cardiovascular Pharmacology, 2006, 48, 314-319.	0.8	71
81	beta-MSH inhibits brain inflammation via MC3/4 receptors and impaired NF-κB signaling. Journal of Neuroimmunology, 2005, 169, 13-19.	1.1	14
82	\hat{I}^2 - and \hat{I}^3 -melanocortins inhibit lipopolysaccharide induced nitric oxide production in mice brain. Brain Research, 2004, 995, 7-13.	1.1	18
83	The methylester of ?-butyrobetaine, but not ?-butyrobetaine itself, induces muscarinic receptor-dependent vasodilatation. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 369, 533-539.	1.4	10
84	Investigations on the Pharmacology of the Cardioprotective Guanidine ME10092. Journal of Cardiovascular Pharmacology, 2004, 44, 178-186.	0.8	4
85	EPR investigation of in vivo inhibitory effect of guanidine compounds on nitric oxide production in rat tissues. Journal of Physiology and Pharmacology, 2003, 54, 339-47.	1.1	11
86	Mildronate Cardioprotective Action through Carnitine-Lowering Effect. Trends in Cardiovascular Medicine, 2002, 12, 275-279.	2.3	119
87	The Regulation of Energy Metabolism Pathways Through L-Carnitine Homeostasis. , 0, , .		6