
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/824001/publications.pdf Version: 2024-02-01

DINC YIE

#	Article	IF	CITATIONS
1	Recent Computational Insights into the Oxygen Activation by Copper-Dependent Metalloenzymes. Topics in Catalysis, 2022, 65, 187-195.	2.8	5
2	Structural Insight into the Catalytic Mechanism of the Endoperoxide Synthase FtmOx1. Angewandte Chemie, 2022, 134, .	2.0	7
3	Structural Insight into the Catalytic Mechanism of the Endoperoxide Synthase FtmOx1. Angewandte Chemie - International Edition, 2022, 61, .	13.8	20
4	Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations. Chinese Physics B, 2022, 31, 058702.	1.4	2
5	Effect of varying load in moving period of a step on dynamics of molecular motors. European Physical Journal E, 2022, 45, 28.	1.6	3
6	How Oxygen Binding Enhances Longâ€Range Electron Transfer: Lessons From Reduction of Lytic Polysaccharide Monooxygenases by Cellobiose Dehydrogenase. Angewandte Chemie, 2021, 133, 2415-2422.	2.0	1
7	How Oxygen Binding Enhances Longâ€Range Electron Transfer: Lessons From Reduction of Lytic Polysaccharide Monooxygenases by Cellobiose Dehydrogenase. Angewandte Chemie - International Edition, 2021, 60, 2385-2392.	13.8	15
8	Compositions, structures, and mid-infrared transparency of Sb–Te–Se thin films synthesized using a combinatorial method. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	2
9	Effects of rebinding rate and asymmetry in unbinding rate on cargo transport by multiple kinesin motors. Communications in Theoretical Physics, 2021, 73, 015603.	2.5	2
10	Insight into the chemomechanical coupling mechanism of kinesin molecular motors. Communications in Theoretical Physics, 2021, 73, 057601.	2.5	17
11	A common ATP-dependent stepping model for kinesin-5 and kinesin-1: Mechanism of bi-directionality of kinesin-5. Biophysical Chemistry, 2021, 271, 106548.	2.8	5
12	A model of processive walking and slipping of kinesin-8 molecular motors. Scientific Reports, 2021, 11, 8081.	3.3	7
13	Studies of Conformational Changes of Tubulin Induced by Interaction with Kinesin Using Atomistic Molecular Dynamics Simulations. International Journal of Molecular Sciences, 2021, 22, 6709.	4.1	15
14	Effect of Kinesin-5 Tail Domain on Motor Dynamics for Antiparallel Microtubule Sliding. International Journal of Molecular Sciences, 2021, 22, 7857.	4.1	4
15	Modeling processive motion of kinesinâ€13 <scp>MCAK</scp> and kinesinâ€14 <scp>Cik1â€Kar3</scp> molecular motors. Protein Science, 2021, 30, 2092-2105.	7.6	5
16	Molecular Mechanism of Processive Stepping of Kinesin Motors. Symmetry, 2021, 13, 1799.	2.2	6
17	Dynamics of kinesin motor proteins under longitudinal and sideways loads. Journal of Theoretical Biology, 2021, 530, 110879.	1.7	13
18	Conformational Motion of Ferredoxin Enables Efficient Electron Transfer to Heme in the Full-Length P450 _{TT} . Journal of the American Chemical Society, 2021, 143, 1005-1016.	13.7	18

#	Article	IF	CITATIONS
19	The molecular mechanism of P450-catalyzed amination of the pyrrolidine derivative of lidocaine: insights from multiscale simulations. RSC Advances, 2021, 11, 27674-27680.	3.6	6
20	Allâ€atom molecular dynamics simulations reveal how kinesin transits from oneâ€headâ€bound to twoâ€headsâ€bound state. Proteins: Structure, Function and Bioinformatics, 2020, 88, 545-557.	2.6	20
21	Activation of O ₂ and H ₂ O ₂ by Lytic Polysaccharide Monooxygenases. ACS Catalysis, 2020, 10, 12760-12769.	11.2	44
22	Electric-Field Mediated Chemistry: Uncovering and Exploiting the Potential of (Oriented) Electric Fields to Exert Chemical Catalysis and Reaction Control. Journal of the American Chemical Society, 2020, 142, 12551-12562.	13.7	195
23	Theoretical Analysis of Dynamics of Kinesin Molecular Motors. ACS Omega, 2020, 5, 5721-5730.	3.5	21
24	A common chemomechanical coupling model for orphan and conventional kinesin molecular motors. Biophysical Chemistry, 2020, 264, 106427.	2.8	9
25	Non-tight and tight chemomechanical couplings of biomolecular motors under hindering loads. Journal of Theoretical Biology, 2020, 490, 110173.	1.7	12
26	Dynamics of ATP-dependent and ATP-independent steppings of myosin-V on actin: catch-bond characteristics. Journal of the Royal Society Interface, 2020, 17, 20200029.	3.4	5
27	A model for the chemomechanical coupling of the mammalian cytoplasmic dynein molecular motor. European Biophysics Journal, 2019, 48, 609-619.	2.2	3
28	Force dependence of unbinding rate of kinesin motor during its processive movement on microtubule. Biophysical Chemistry, 2019, 253, 106216.	2.8	22
29	A Generalized Kinetic Model for Coupling between Stepping and ATP Hydrolysis of Kinesin Molecular Motors. International Journal of Molecular Sciences, 2019, 20, 4911.	4.1	16
30	A model for the chemomechanical coupling of myosin-V molecular motors. RSC Advances, 2019, 9, 26734-26747.	3.6	3
31	Modeling DNA Unwinding by AddAB Helicase–Nuclease and Modulation by Chi Sequences: Comparison with AdnAB and RecBCD. Cellular and Molecular Bioengineering, 2019, 12, 179-191.	2.1	2
32	Dynamics of cooperative cargo transport by two elastically coupled kinesin motors. European Physical Journal E, 2019, 42, 41.	1.6	6
33	Run length distribution of dimerized kinesin-3 molecular motors: comparison with dimeric kinesin-1. Scientific Reports, 2019, 9, 16973.	3.3	14
34	Force Dependence of Velocity and Run Length of Kinesin-1, Kinesin-2 and Kinesin-5 Family Molecular Motors. Molecules, 2019, 24, 287.	3.8	18
35	ATP-Concentration- and Force-Dependent Chemomechanical Coupling of Kinesin Molecular Motors. Journal of Chemical Information and Modeling, 2019, 59, 360-372.	5.4	17
36	A model of DNA unwinding dynamics by the RecBCD complex and its regulation by Chi recognition. Journal of Theoretical Biology, 2018, 448, 142-156.	1.7	5

#	Article	IF	CITATIONS
37	A non-tight chemomechanical coupling model for force-dependence of movement dynamics of molecular motors. Physical Chemistry Chemical Physics, 2018, 20, 4752-4759.	2.8	15
38	A revised wormâ€like chain model for elasticity of polypeptide chains. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 297-307.	2.1	5
39	Processivity of dimeric kinesinâ€a molecular motors. FEBS Open Bio, 2018, 8, 1332-1351.	2.3	25
40	Dynamics of tRNA dissociation in early and later cycles of translation elongation by the ribosome. BioSystems, 2018, 172, 43-51.	2.0	3
41	Oriented-External Electric Fields Create Absolute Enantioselectivity in Diels–Alder Reactions: Importance of the Molecular Dipole Moment. Journal of the American Chemical Society, 2018, 140, 13350-13359.	13.7	113
42	Investigating role of conformational changes of microtubule in regulating its binding affinity to kinesin by allâ€atom molecular dynamics simulation. Proteins: Structure, Function and Bioinformatics, 2018, 86, 1127-1139.	2.6	25
43	A model of processive movement of dimeric kinesin. Journal of Theoretical Biology, 2017, 414, 62-75.	1.7	38
44	<scp>D</scp> ynamics of bridge helix bending in RNA polymerase II. Proteins: Structure, Function and Bioinformatics, 2017, 85, 614-629.	2.6	4
45	An intermediate state of T7 RNA polymerase provides another pathway of nucleotide selection. Chinese Physics B, 2017, 26, 100203.	1.4	1
46	Dynamics of DNA unwinding by helicases with frequent backward steps. Mathematical Biosciences, 2017, 294, 33-45.	1.9	5
47	Involvement of G-triplex and G-hairpin in the multi-pathway folding of human telomeric G-quadruplex. Nucleic Acids Research, 2017, 45, 11401-11412.	14.5	67
48	Dynamics of dimeric kinesins: Limping, effect of longitudinal force, effects of neck linker extension and mutation, and comparison between kinesin-1 and kinesin-2. International Journal of Biological Macromolecules, 2017, 105, 1126-1137.	7.5	16
49	Brownian ratchet mechanism of translocation in T7 RNA polymerase facilitated by a post-translocation energy bias arising from the conformational change of the enzyme. Chinese Physics B, 2017, 26, 030201.	1.4	4
50	Mechanism of ribosome translation through mRNA secondary structures. International Journal of Biological Sciences, 2017, 13, 712-722.	6.4	12
51	Dynamic relationships between ribosomal conformational and RNA positional changes during ribosomal translocation. Heliyon, 2016, 2, e00214.	3.2	6
52	Modeling Ribosomal Translocation Facilitated by Peptidyl Transferase Antibiotics. Cellular and Molecular Bioengineering, 2016, 9, 289-302.	2.1	2
53	Processivity of nucleic acid unwinding and translocation by helicases. Proteins: Structure, Function and Bioinformatics, 2016, 84, 1590-1605.	2.6	5
54	On the pathway of ribosomal translocation. International Journal of Biological Macromolecules, 2016, 92, 401-415.	7.5	5

#	Article	IF	CITATIONS
55	Optimal numbers of residues in linkers of DNA polymerase I, T7 primase and DNA polymerase IV. Scientific Reports, 2016, 6, 29125.	3.3	2
56	Model of the pathway of â^'1 frameshifting: Long pausing. Biochemistry and Biophysics Reports, 2016, 5, 408-424.	1.3	3
57	Model of the pathway of –1 frameshifting: Kinetics. Biochemistry and Biophysics Reports, 2016, 5, 453-467.	1.3	1
58	Dynamics of monomeric and hexameric helicases. Biophysical Chemistry, 2016, 211, 49-58.	2.8	13
59	Model of ribosomal translocation coupled with intra- and inter-subunit rotations. Biochemistry and Biophysics Reports, 2015, 2, 87-93.	1.3	11
60	Ribosome utilizes the minimum free energy changes to achieve the highest decoding rate and fidelity. Physical Review E, 2015, 92, 022716.	2.1	1
61	A model for chromosome organization during the cell cycle in live E. coli. Scientific Reports, 2015, 5, 17133.	3.3	8
62	Dwell-Time Distribution, Long Pausing and Arrest of Single-Ribosome Translation through the mRNA Duplex. International Journal of Molecular Sciences, 2015, 16, 23723-23744.	4.1	11
63	A unified model of nucleic acid unwinding by the ribosome and the hexameric and monomeric DNA helicases. Journal of Theoretical Biology, 2015, 380, 359-366.	1.7	9
64	Biphasic character of ribosomal translocation and non-Michaelis-Menten kinetics of translation. Physical Review E, 2014, 90, 062703.	2.1	7
65	Origin of multiple intersubunit rotations before EF-G-catalyzed ribosomal translocation through the mRNA with a downstream secondary structure. BMC Biophysics, 2014, 7, .	4.4	10
66	An explanation of biphasic characters of mRNA translocation in the ribosome. BioSystems, 2014, 118, 1-7.	2.0	11
67	Condensations of single DNA molecules induced by heptaplatin and its chiral isomer. AIP Advances, 2014, 4, .	1.3	2
68	Model of EF4-induced ribosomal state transitions and mRNA translocation. Physical Biology, 2014, 11, 046007.	1.8	3
69	Dynamics of tRNA translocation, mRNA translocation and tRNA dissociation during ribosome translation through mRNA secondary structures. European Biophysics Journal, 2014, 43, 229-240.	2.2	7
70	Dynamics of +1 ribosomal frameshifting. Mathematical Biosciences, 2014, 249, 44-51.	1.9	4
71	Model of ribosome translation and mRNA unwinding. European Biophysics Journal, 2013, 42, 347-354.	2.2	22
72	Dynamics of DNA polymerase I (Klenow fragment) under external force. Journal of Molecular Modeling, 2013, 19, 1379-1389.	1.8	2

#	Article	IF	CITATIONS
73	Translocation dynamics of tRNA–mRNA in the ribosome. Biophysical Chemistry, 2013, 180-181, 22-28.	2.8	7
74	Dynamics of tRNA occupancy and dissociation during translation by the ribosome. Journal of Theoretical Biology, 2013, 316, 49-60.	1.7	17
75	A dynamical model of programmed â~1 ribosomal frameshifting. Journal of Theoretical Biology, 2013, 336, 119-131.	1.7	6
76	Dynamics of Forward and Backward Translocation of mRNA in the Ribosome. PLoS ONE, 2013, 8, e70789.	2.5	9
77	Studying the interaction between gyrase and DNA using magnetic tweezers. Science Bulletin, 2012, 57, 3560-3566.	1.7	0
78	A dynamic model for processive transcription elongation and backtracking long pauses by multisubunit RNA polymerases. Proteins: Structure, Function and Bioinformatics, 2012, 80, 2020-2034.	2.6	8
79	Modeling translocation dynamics of strand displacement DNA synthesis by DNA polymerase I. Journal of Molecular Modeling, 2012, 18, 1951-1960.	1.8	4
80	Are Coiled-Coils of Dimeric Kinesins Unwound during Their Walking on Microtubule?. PLoS ONE, 2012, 7, e36071.	2.5	10
81	Lead germanium telluride: a mechanically robust infrared high-index layer. Journal of Materials Science, 2011, 46, 4000-4004.	3.7	25
82	A model for dynamics of primer extension by eukaryotic DNA primase. European Biophysics Journal, 2011, 40, 1157-1165.	2.2	6
83	A nucleotide binding rectification Brownian ratchet model for translocation of Y-family DNA polymerases. Theoretical Biology and Medical Modelling, 2011, 8, 22.	2.1	6
84	A model for the dynamics of mammalian family X DNA polymerases. Journal of Theoretical Biology, 2011, 277, 111-122.	1.7	4
85	A Model for Transition of 5′-Nuclease Domain of DNA Polymerase I from Inert to Active Modes. PLoS ONE, 2011, 6, e16213.	2.5	12
86	Dynamics of strand passage catalyzed by topoisomerase II. European Biophysics Journal, 2010, 39, 1251-1259.	2.2	4
87	A model for processive movement of single-headed myosin-IX. Biophysical Chemistry, 2010, 151, 71-80.	2.8	12
88	A modified model for translocation events of processive nucleotide and repeat additions by the recombinant telomerase. Biophysical Chemistry, 2010, 153, 83-96.	2.8	2
89	Supramolecular templateâ€directed synthesis of stable and highâ€efficiency photoluminescence 9,10â€diphenylanthrylâ€bridged ladder polysiloxane. Journal of Polymer Science Part A, 2010, 48, 2491-2497.	2.3	22
90	Mechanism of Processive Movement of Monomeric and Dimeric Kinesin Molecules. International Journal of Biological Sciences, 2010, 6, 665-674.	6.4	45

#	Article	IF	CITATIONS
91	In situ molecular composites of ladder polyphenylsilsesquioxane and polyisophthalamide and their electro-spinning fibers. Polymer Chemistry, 2010, 1, 1095.	3.9	9
92	Processive hand-over-hand motion of homodimeric nanomotors induced by interaction between two monomeric components and thermal noise. Physical Review E, 2009, 79, 011920.	2.1	2
93	Molecular motors that digest their track to rectify Brownian motion: processive movement of exonuclease enzymes. Journal of Physics Condensed Matter, 2009, 21, 375108.	1.8	8
94	On chemomechanical coupling of the F1-ATPase molecular motor. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 955-962.	1.0	3
95	A thermal ratchet model of tRNA–mRNA translocation by the ribosome. BioSystems, 2009, 96, 19-28.	2.0	3
96	A possible mechanism of processive nucleotide and repeat additions by the telomerase. BioSystems, 2009, 97, 168-178.	2.0	2
97	A possible mechanism for the dynamics of transition between polymerase and exonuclease sites in a high-fidelity DNA polymerase. Journal of Theoretical Biology, 2009, 259, 434-439.	1.7	13
98	Dynamics of backtracking long pauses of RNA polymerase. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 212-219.	1.9	5
99	A polymerase-site-jumping model for strand transfer during DNA synthesis by reverse transcriptase. Virus Research, 2009, 144, 65-73.	2.2	3
100	A Stable and Highâ€Efficiency Blueâ€Light Emitting Terphenylâ€Bridged Ladder Polysiloxane. Macromolecular Rapid Communications, 2008, 29, 1259-1263.	3.9	23
101	A dynamic model for transcription elongation and sequence-dependent short pauses by RNA polymerase. BioSystems, 2008, 93, 199-210.	2.0	13
102	Stepping behavior of two-headed kinesin motors. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 1195-1202.	1.0	22
103	Limping of Homodimeric Kinesin Motors. Journal of Molecular Biology, 2007, 366, 976-985.	4.2	15
104	Simultaneous High-Efficiency Second- and Third-Harmonic Generation in a 1-D Semiconductor Photonic Crystal. IEEE Journal of Quantum Electronics, 2007, 43, 804-809.	1.9	5
105	Processivity of single-headed kinesin motors. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 1418-1427.	1.0	16
106	On translocation mechanism of ring-shaped helicase along single-stranded DNA. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 737-748.	2.3	7
107	Model for RuvAB-mediated branch migration of Holliday junctions. Journal of Theoretical Biology, 2007, 249, 566-573.	1.7	7
108	Study the effects of divalent metallic ions on the combination of DNA and histones with fluorescence anisotropy assays. Science Bulletin, 2007, 52, 1166-1171.	1.7	2

#	Article	IF	CITATIONS
109	Model for Unidirectional Movement of Axonemal and Cytoplasmic Dynein Molecules. Acta Biochimica Et Biophysica Sinica, 2006, 38, 711-724.	2.0	7
110	A hand-over-hand diffusing model for myosin-VI molecular motors. Biophysical Chemistry, 2006, 122, 90-100.	2.8	8
111	Mechanochemical couplings of kinesin motors. Biophysical Chemistry, 2006, 123, 58-76.	2.8	10
112	Model for kinetics of wild-type and mutant kinesins. BioSystems, 2006, 84, 24-38.	2.0	9
113	Model for kinetics of myosin-V molecular motors. Biophysical Chemistry, 2006, 120, 225-236.	2.8	11
114	Direct visualization of RecQ helicase–DNA interaction with fluorescence microscopy and atomic force microscopy. Science and Technology of Advanced Materials, 2005, 6, 842-847.	6.1	2
115	Study the effects of metallic ions on the combination of DNA and histones with molecular combing technique. Science Bulletin, 2005, 50, 731-737.	1.7	6
116	Liquid crystal elastomers, networks and gels: advanced smart materials. Journal of Materials Chemistry, 2005, 15, 2529.	6.7	192
117	Photorefractive Four-Wave Mixing Switches Utilizing Pockels Effect -Longitudinal and Lateral Switches Optical Review, 2004, 11, 332-336.	2.0	0
118	Synthesis and characterization of ethoxy-terminated ladder-like polymethylsilsesquioxane oligomer. Polymer International, 2004, 53, 113-120.	3.1	12
119	Hydrogen-Bonding-Directed Template Synthesis of Novel Stereo-Regular Organo-Bridged Ladder-Like Polymethylsiloxane. Macromolecular Chemistry and Physics, 2003, 204, 155-163.	2.2	9
120	Hydrogen-bonding-aided synthesis of novel ladderlike organobridged polysiloxane containing side-chain naphthyl groups. Journal of Polymer Science Part A, 2003, 41, 636-644.	2.3	11
121	A New Insight into the Hydrogen-bonded Liquid Crystals Built from Carboxylic Acids and Pyridyl Moieties. Molecular Crystals and Liquid Crystals, 2002, 373, 119-126.	0.9	19
122	A novel tube-structure entrapped curing accelerator for prolonging the shelf-life of epoxy resin-based microelectronic packaging material. Journal of Materials Chemistry, 2002, 12, 2325-2330.	6.7	8
123	Synthesis of a Novel 2,5-Dipropylhydroquinone-Bridged Ladder-Like Polymethylsiloxane Using a Hydroquinone H-Bonding Self-Assembling Template. Macromolecular Rapid Communications, 2002, 23, 366-369.	3.9	13
124	Studies on the Synthesis and Conductivity of a Novel Reactive Ladder-Like Poly(-cyanoethylsilsesquioxane) and Poly[(-cyanoethylsilsesquioxane)-co-(-methylsilsesquioxane)]. Macromolecular Chemistry and Physics, 2002, 203, 2351-2356.	2.2	7
125	Novel microencapsulated curing accelerator for prolonging shelf life of epoxy resin composition. Journal of Applied Polymer Science, 2002, 85, 873-878.	2.6	26
126	Self-assembling directed synthesis of a novel terephthalamide-bridged ladderlike polysiloxane. Journal of Polymer Science Part A, 2002, 40, 3161-3170.	2.3	12

#	Article	IF	CITATIONS
127	Synthesis and characterization of a novel polyorganosiloxane having a bigger sized tubular structure and its supramolecular clathrate. Polymers for Advanced Technologies, 2002, 13, 188-195.	3.2	3
128	Synthesis and characterization of a metal chelate-bridged quasi-ladder main chain discotic liquid crystal polymer. Liquid Crystals, 2001, 28, 477-481.	2.2	4
129	Synthesis and characterization of a novel soluble reactive ladder-like polysilsesquioxane with side-chain 2-(4-chloromethyl phenyl) ethyl groups. Polymers for Advanced Technologies, 2001, 12, 475-481.	3.2	5
130	Synthesis and characterization of polyorganosiloxane (POS) containing nano-scale tubular structure and its supramolecular clathrate. Polymers for Advanced Technologies, 2001, 12, 626-636.	3.2	5
131	Synthesis and Characterization of Novel Alcohol-Soluble Ladderlike Poly(silsesquioxane)s Containing Side-Chain Hydroxy Groups. Macromolecular Chemistry and Physics, 2001, 202, 1576-1580.	2.2	34
132	Study of the Steric Tacticity of Novel Soluble Ladderlike Poly(phenylsilsesquioxane) Prepared by Stepwise Coupling Polymerization. Macromolecular Chemistry and Physics, 2001, 202, 1581-1585.	2.2	45
133	Synthesis and mesomorphic properties of a novel ladder-like 1,4-phenylene-bridged liquid crystalline polysiloxane containing ester-based mesogenic side groups. Liquid Crystals, 2001, 28, 35-43.	2.2	6
134	Synthesis and characterization of novel reactive ladder-like polysilsesquioxanes with side-chain ester groups (Ester-Ts). Polymer International, 2000, 49, 509-513.	3.1	12
135	Synthesis and characterization of a novel terephthalate-bridged ladderlike polymethylsiloxane. Polymer International, 2000, 49, 1658-1664.	3.1	9
136	Synthesis and characterization of a novel reactive ladderlike 4,4?-phenylene ether-bridged polyvinylsiloxane. Journal of Polymer Science Part A, 2000, 38, 2702-2710.	2.3	19
137	Phase conjugator with two coherent beams in a BaTiO3:Ce crystal. Science in China Series A: Mathematics, 2000, 43, 743-752.	0.5	1
138	Synthesis and mesomorphic properties of novel fishbone-like liquid crystalline polysilsesquioxanes VI. Fishbone-like, ester-based liquid crystalline polysilsesquioxanes. Liquid Crystals, 2000, 27, 907-916.	2.2	8
139	Eliminating spatiotemporal chaos and spiral waves by weak spatial perturbations. Physical Review E, 2000, 61, 5120-5123.	2.1	52
140	Synthesis of Three Organo-Bridged Coupled Key Intermediates in the Stepwise Coupling Polymerization. Synthetic Communications, 2000, 30, 1813-1823.	2.1	11
141	Improvement of LPS-based command surfaces: effect of inserting a flexible disiloxane segment into the azo side chain on photo-driven response. Liquid Crystals, 2000, 27, 1683-1689.	2.2	8
142	Polyorganosiloxane-europium (III) host-guest inclusion system and its energy transfer luminescence. Science in China Series B: Chemistry, 1999, 42, 351-356.	0.8	3
143	A Combined Method Based on Rubbing and UV-Irradiation for Preparing Stable Alignment-Layers with High Pretilt Angles. Molecular Crystals and Liquid Crystals, 1999, 333, 135-144.	0.3	9
144	Stabilization, Selection, and Tracking of Unstable Patterns by Weak Spatial Perturbations. Physical Review Letters, 1998, 80, 4669-4672.	7.8	27

#	Article	IF	CITATIONS
145	Temporal behavior and instabilities of the self-pumped phase conjugation in photorefractive crystals. Physical Review A, 1997, 56, 936-943.	2.5	5
146	Self-pumped phase conjugation in photorefractive crystals: Reflectivity and spatial fidelity. Physical Review A, 1997, 55, 3092-3100.	2.5	13
147	Performance-improved photo-driven liquid crystal cell using azobenzene-grafted ladderlike polysiloxane as command layer. Macromolecular Chemistry and Physics, 1997, 198, 1855-1863.	2.2	15
148	A novel orientation material for liquid crystals based on modified ladder-like polysiloxanes. Macromolecular Chemistry and Physics, 1997, 198, 3377-3384.	2.2	11
149	Functionalization and application of ladder-like polysilsesquioxanes. Polymers for Advanced Technologies, 1997, 8, 649-656.	3.2	42
150	Functionalization and application of ladder-like polysilsesquioxanes. , 1997, 8, 649.		1
151	Synthesis and mesomorphic properties of fishbonelike, liquid crystalline polysilsesquioxanes: 4. Pdâ€coordinating, fishboneâ€like imineâ€based liquid crystalline polysilsesquioxane. Macromolecular Symposia, 1996, 105, 249-255.	0.7	15
152	Synthesis and mesomorphic properties of fishbone-like liquid crystalline polysilsesquioxanes, 3. Fishbone-like, azo-based liquid crystalline polysilsesquioxane. Macromolecular Chemistry and Physics, 1996, 197, 745-752.	2.2	27
153	Photo-driven liquid crystal cell using azobenzene-grafted ladderlike polysiloxane as command layer. Macromolecular Rapid Communications, 1996, 17, 759-766.	3.9	14
154	Mechanism of selfâ€pumped phase conjugation in photorefractive crystals. Applied Physics Letters, 1996, 69, 4005-4007.	3.3	8
155	Synthesis and Anisotropic Behavior of New Ladderlike Polysilsesquioxanes with Side-on and End-on Fixed NLO Chromophores. Molecular Crystals and Liquid Crystals, 1996, 289, 45-57.	0.3	13
156	Electro-Optical Effect of Varied SCLCP/LC Blend Systems. Molecular Crystals and Liquid Crystals, 1995, 269, 75-87.	0.3	4
157	A twoâ€dimensional theory and propagation of beam fanning in photorefractive crystals. Journal of Applied Physics, 1994, 75, 1891-1895.	2.5	10
158	Theoretical and experimental studies of fanning effects in photorefractive crystals. Journal of Applied Physics, 1993, 74, 813-818.	2.5	16
159	A new eluting solvent for gel permeation chromatography of isotactic polypropylene. Die Makromolekulare Chemie Rapid Communications, 1985, 6, 105-110.	1.1	19