Hans W Paerl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8239598/publications.pdf Version: 2024-02-01

		4383	3031
222	37,460	86	188
papers	citations	h-index	g-index
227	227	227	21641
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Controlling Eutrophication: Nitrogen and Phosphorus. Science, 2009, 323, 1014-1015.	6.0	2,998
2	Blooms Like It Hot. Science, 2008, 320, 57-58.	6.0	2,217
3	Cyanobacterial blooms. Nature Reviews Microbiology, 2018, 16, 471-483.	13.6	1,671
4	Climate change: Links to global expansion of harmful cyanobacteria. Water Research, 2012, 46, 1349-1363.	5.3	1,252
5	Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls. Microbial Ecology, 2013, 65, 995-1010.	1.4	1,237
6	Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports, 2009, 1, 27-37.	1.0	1,204
7	Trichodesmium, a Globally Significant Marine Cyanobacterium. Science, 1997, 276, 1221-1229.	6.0	1,195
8	Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Science of the Total Environment, 2011, 409, 1739-1745.	3.9	856
9	Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Research, 2011, 45, 1973-1983.	5.3	841
10	Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnology and Oceanography, 2010, 55, 420-432.	1.6	823
11	A Drinking Water Crisis in Lake Taihu, China: Linkage to Climatic Variability and Lake Management. Environmental Management, 2010, 45, 105-112.	1.2	778
12	A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp Harmful Algae, 2016, 54, 4-20.	2.2	776
13	Harmful Freshwater Algal Blooms, With an Emphasis on Cyanobacteria. Scientific World Journal, The, 2001, 1, 76-113.	0.8	769
14	Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and groundwater as "new―nitrogen and other nutrient sources. Limnology and Oceanography, 1997, 42, 1154-1165.	1.6	674
15	Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnology and Oceanography, 1988, 33, 823-843.	1.6	608
16	Allied attack: climate change and eutrophication. Inland Waters, 2011, 1, 101-105.	1.1	548
17	lt Takes Two to Tango: When and Where Dual Nutrient (N & P) Reductions Are Needed to Protect Lakes and Downstream Ecosystems. Environmental Science & Technology, 2016, 50, 10805-10813.	4.6	483
18	Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1373.	2.8	465

#	Article	IF	CITATIONS
19	Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae, 2016, 54, 213-222.	2.2	453
20	Ecosystem responses to internal and watershed organic matter loading:consequences for hypoxia in the eutrophying Neuse River Estuary, North Carolina, USA. Marine Ecology - Progress Series, 1998, 166, 17-25.	0.9	447
21	How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae, 2016, 54, 145-159.	2.2	439
22	Rationale for Control of Anthropogenic Nitrogen and Phosphorus to Reduce Eutrophication of Inland Waters. Environmental Science & Technology, 2011, 45, 10300-10305.	4.6	429
23	Controlling Eutrophication along the Freshwater–Marine Continuum: Dual Nutrient (N and P) Reductions are Essential. Estuaries and Coasts, 2009, 32, 593-601.	1.0	394
24	A mini-review of microbial consortia: Their roles in aquatic production and biogeochemical cycling. Microbial Ecology, 1996, 31, 225-47.	1.4	389
25	Perennial Antarctic Lake Ice: An Oasis for Life in a Polar Desert. Science, 1998, 280, 2095-2098.	6.0	358
26	Anthropogenic and climatic influences on the eutrophication of large estuarine ecosystems. Limnology and Oceanography, 2006, 51, 448-462.	1.6	277
27	Ecosystem impacts of three sequential hurricanes (Dennis, Floyd, and Irene) on the United States' largest lagoonal estuary, Pamlico Sound, NC. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5655-5660.	3.3	267
28	Atmospheric deposition of nitrogen: Implications for nutrient over-enrichment of coastal waters. Estuaries and Coasts, 2002, 25, 677-693.	1.7	254
29	Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environmental Microbiology, 2000, 2, 11-26.	1.8	253
30	Mitigating the Expansion of Harmful Algal Blooms Across the Freshwater-to-Marine Continuum. Environmental Science & Technology, 2018, 52, 5519-5529.	4.6	246
31	Why Lake Taihu continues to be plagued with cyanobacterial blooms through 10†years (2007–2017) efforts. Science Bulletin, 2019, 64, 354-356.	4.3	243
32	Global solutions to regional problems: Collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study. Harmful Algae, 2016, 54, 223-238.	2.2	231
33	Regulation of estuarine primary production by watershed rainfall and river flow. Marine Ecology - Progress Series, 1993, 93, 199-203.	0.9	229
34	Evolving Paradigms and Challenges in Estuarine and Coastal Eutrophication Dynamics in a Culturally and Climatically Stressed World. Estuaries and Coasts, 2014, 37, 243-258.	1.0	223
35	Future HAB science: Directions and challenges in a changing climate. Harmful Algae, 2020, 91, 101632.	2.2	223
36	Climate Change Impacts on Harmful Algal Blooms in U.S. Freshwaters: A Screening-Level Assessment. Environmental Science & Technology, 2017, 51, 8933-8943.	4.6	220

#	Article	IF	CITATIONS
37	Nuisance phytoplankton blooms in coastal, estuarine, and inland waters1. Limnology and Oceanography, 1988, 33, 823-843.	1.6	202
38	Mitigating Harmful Cyanobacterial Blooms in a Human- and Climatically-Impacted World. Life, 2014, 4, 988-1012.	1.1	197
39	Microalgal Pigment Assessments Using High-Performance Liquid Chromatography: A Synopsis of Organismal and Ecological Applications. Canadian Journal of Fisheries and Aquatic Sciences, 1993, 50, 2513-2527.	0.7	196
40	Blooms Bite the Hand That Feeds Them. Science, 2013, 342, 433-434.	6.0	195
41	Salinity Effects on Growth, Photosynthetic Parameters, and Nitrogenase Activity in Estuarine Planktonic Cyanobacteria. Microbial Ecology, 2002, 43, 432-442.	1.4	194
42	Throwing Fuel on the Fire: Synergistic Effects of Excessive Nitrogen Inputs and Global Warming on Harmful Algal Blooms. Environmental Science & Technology, 2010, 44, 7756-7758.	4.6	194
43	Coastal eutrophication in relation to atmospheric nitrogen deposition: Current perspectives. Ophelia, 1995, 41, 237-259.	0.3	179
44	Enhancement of marine primary production by nitrogen-enriched acid rain. Nature, 1985, 315, 747-749.	13.7	175
45	Physiological Ecology and Regulation of N2 Fixation in Natural Waters. Advances in Microbial Ecology, 1990, , 305-344.	0.1	169
46	Seasonal and hydrological control of phytoplankton nutrient limitation in the lower Neuse River Estuary, North Carolina. Marine Ecology - Progress Series, 1991, 75, 133-142.	0.9	167
47	Phytoplankton Photopigments as Indicators of Estuarine and Coastal Eutrophication. BioScience, 2003, 53, 953.	2.2	166
48	Blueâ€green algal scums: An explanation for their occurrence during freshwater blooms1. Limnology and Oceanography, 1982, 27, 212-217.	1.6	164
49	Solving Problems Resulting from Solutions:Â Evolution of a Dual Nutrient Management Strategy for the Eutrophying Neuse River Estuary, North Carolina. Environmental Science & Technology, 2004, 38, 3068-3073.	4.6	162
50	Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins. Toxins, 2018, 10, 156.	1.5	159
51	The relationships between nutrients, cyanobacterial toxins and the microbial community in Taihu (Lake Tai), China. Harmful Algae, 2011, 10, 207-215.	2.2	157
52	Carotenoid enhancement and its role in maintaining blueâ€green algal (Microcystis aeruginosa) surface blooms1. Limnology and Oceanography, 1983, 28, 847-857.	1.6	155
53	Phytoplankton Community Indicators of Short- and Long-term Ecological Change in the Anthropogenically and Climatically Impacted Neuse River Estuary, North Carolina, USA. Estuaries and Coasts, 2010, 33, 485-497.	1.0	154
54	Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater–marine continuum. Advances in Experimental Medicine and Biology, 2008, 619, 217-237.	0.8	150

#	Article	IF	CITATIONS
55	Perspective: Advancing the research agenda for improving understanding of cyanobacteria in a future of global change. Harmful Algae, 2020, 91, 101601.	2.2	149
56	Toxic Cyanobacteria: A Growing Threat to Water and Air Quality. Environmental Science & Technology, 2021, 55, 44-64.	4.6	146
57	The impact of flooding on aquatic ecosystem services. Biogeochemistry, 2018, 141, 439-461.	1.7	142
58	Water quality and phytoplankton as indicators of hurricane impacts on a large estuarine ecosystem. Estuaries and Coasts, 2003, 26, 1329-1343.	1.7	139
59	Algal blooms: Noteworthy nitrogen. Science, 2014, 346, 175-175.	6.0	138
60	Mitigating Toxic Planktonic Cyanobacterial Blooms in Aquatic Ecosystems Facing Increasing Anthropogenic and Climatic Pressures. Toxins, 2018, 10, 76.	1.5	132
61	Bioavailability of atmospheric organic nitrogen deposition to coastal phytoplankton. Limnology and Oceanography, 1997, 42, 1819-1823.	1.6	126
62	Shifting states, shifting services: Linking regime shifts to changes in ecosystem services of shallow lakes. Freshwater Biology, 2021, 66, 1-12.	1.2	123
63	Long-term nutrient trends and harmful cyanobacterial bloom potential in hypertrophic Lake Taihu, China. Hydrobiologia, 2017, 787, 229-242.	1.0	122
64	Nutrient limitation dynamics examined on a multi-annual scale in Lake Taihu, China: implications for controlling eutrophication and harmful algal blooms. Journal of Freshwater Ecology, 2015, 30, 5-24.	0.5	120
65	Mitigating harmful cyanobacterial blooms: strategies for control of nitrogen and phosphorus loads. Aquatic Ecology, 2016, 50, 351-366.	0.7	120
66	Physiological ecology of toxic aquatic cyanobacteria. Phycologia, 1996, 35, 160-167.	0.6	118
67	The role of tropical cyclones in stimulating cyanobacterial (Microcystis spp.) blooms in hypertrophic Lake Taihu, China. Harmful Algae, 2014, 39, 310-321.	2.2	118
68	Duelling â€~CyanoHABs': unravelling the environmental drivers controlling dominance and succession among diazotrophic and nonâ€N ₂ â€fixing harmful cyanobacteria. Environmental Microbiology, 2016, 18, 316-324.	1.8	117
69	N 2 -Fixing Microbial Consortia Associated with the Ice Cover of Lake Bonney, Antarctica. Microbial Ecology, 1998, 36, 231-238.	1.4	116
70	Allelopathic interactions of linoleic acid and nitric oxide increase the competitive ability of <i>Microcystis aeruginosa</i> . ISME Journal, 2017, 11, 1865-1876.	4.4	115
71	Estimating the spatial extent of bottom-water hypoxia and habitat degradation in a shallow estuary. Marine Ecology - Progress Series, 2002, 230, 103-112.	0.9	115
72	The persistence of cyanobacterial (<i>M icrocystis</i> spp.) blooms throughout winter in Lake Taihu, China. Limnology and Oceanography, 2016, 61, 711-722.	1.6	114

#	Article	IF	CITATIONS
73	Flow scintillation counting of 14C-labeled microalgal photosynthetic pigments. Journal of Plankton Research, 1996, 18, 1867-1880.	0.8	112
74	Climatically-modulated decline in wind speed may strongly affect eutrophication in shallow lakes. Science of the Total Environment, 2018, 645, 1361-1370.	3.9	109
75	Bacterially mediated precipitation in marine stromatolites. Environmental Microbiology, 2001, 3, 123-130.	1.8	108
76	Impacts of inorganic nutrient enrichment on phytoplankton community structure and function in Pamlico Sound, NC, USA. Estuarine, Coastal and Shelf Science, 2004, 61, 197-209.	0.9	108
77	Predicting Sources of Dissolved Organic Nitrogen to an Estuary from an Agro-Urban Coastal Watershed. Environmental Science & Technology, 2016, 50, 8473-8484.	4.6	107
78	Effects of variable irradiance on phytoplankton productivity in shallow estuaries. Limnology and Oceanography, 1992, 37, 54-62.	1.6	103
79	Controlling Cyanobacterial Blooms in Hypertrophic Lake Taihu, China: Will Nitrogen Reductions Cause Replacement of Non-N2 Fixing by N2 Fixing Taxa?. PLoS ONE, 2014, 9, e113123.	1.1	102
80	Mitigating eutrophication and toxic cyanobacterial blooms in large lakes:ÂThe evolution of a dual nutrient (N and P) reduction paradigm. Hydrobiologia, 2020, 847, 4359-4375.	1.0	100
81	Diel Interactions of Oxygenic Photosynthesis and N ₂ Fixation (Acetylene Reduction) in a Marine Microbial Mat Community. Applied and Environmental Microbiology, 1987, 53, 2353-2362.	1.4	99
82	Ecophysiological and Trophic Implications of Light-Stimulated Amino Acid Utilization in Marine Picoplankton. Applied and Environmental Microbiology, 1991, 57, 473-479.	1.4	99
83	Smallâ€scale shear effects on heterocystous cyanobacteria. Limnology and Oceanography, 2002, 47, 108-119.	1.6	98
84	Two decades of tropical cyclone impacts on North Carolina's estuarine carbon, nutrient and phytoplankton dynamics: implications for biogeochemical cycling and water quality in a stormier world. Biogeochemistry, 2018, 141, 307-332.	1.7	98
85	PHYTOPLANKTON INDICATORS OF ECOLOGICAL CHANGE IN THE EUTROPHYING PAMLICO SOUND SYSTEM, NORTH CAROLINA. Ecological Applications, 2007, 17, S88.	1.8	95
86	Ecological response to hurricane events in the Pamlico Sound system, North Carolina, and implications for assessment and management in a regime of increased frequency. Estuaries and Coasts, 2006, 29, 1033-1045.	1.0	94
87	RESPONSES OF THE PHYTOPLANKTON COMMUNITY GROWTH RATE TO NUTRIENT PULSES IN VARIABLE ESTUARINE ENVIRONMENTS. Journal of Phycology, 1999, 35, 1455-1463.	1.0	93
88	Mitigating the global expansion of harmful cyanobacterial blooms: Moving targets in a human- and climatically-altered world. Harmful Algae, 2020, 96, 101845.	2.2	92
89	Long-term temporal and spatial trends in phytoplankton biomass and class-level taxonomic composition in the hydrologically variable Neuse-Pamlico estuarine continuum, North Carolina, U.S.A Limnology and Oceanography, 2006, 51, 1410-1420.	1.6	91
90	Non-monotonic Responses of Phytoplankton Biomass Accumulation to Hydrologic Variability: A Comparison of Two Coastal Plain North Carolina Estuaries. Estuaries and Coasts, 2012, 35, 1376-1392.	1.0	90

#	Article	IF	CITATIONS
91	Recent increase in catastrophic tropical cyclone flooding in coastal North Carolina, USA: Long-term observations suggest a regime shift. Scientific Reports, 2019, 9, 10620.	1.6	89
92	Identification of the Sources of Energy for Nitrogen Fixation and Physiological Characterization of Nitrogen-Fixing Members of a Marine Microbial Mat Community. Applied and Environmental Microbiology, 1993, 59, 1495-1503.	1.4	87
93	Application of photopigment biomarkers for quantifying microalgal community composition and in situ growth rates. Organic Geochemistry, 2001, 32, 585-595.	0.9	86
94	Coastal marine eutrophication: Control of both nitrogen and phosphorus is necessary. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, E103; author reply E104.	3.3	86
95	Contributions of external nutrient loading and internal cycling to cyanobacterial bloom dynamics in Lake Taihu, China: Implications for nutrient management. Limnology and Oceanography, 2021, 66, 1492-1509.	1.6	86
96	Environmental controls of phytoplankton bloom dynamics in the Neuse River Estuary, North Carolina, U.S.A Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54, 2491-2501.	0.7	82
97	Estuarine Phytoplankton Responses to Hurricanes and Tropical Storms with Different Characteristics (Trajectory, Rainfall, Winds). Estuaries and Coasts, 2008, 31, 419-429.	1.0	80
98	Evidence for the Importance of Atmospheric Nitrogen Deposition to Eutrophic Lake Dianchi, China. Environmental Science & Technology, 2017, 51, 6699-6708.	4.6	80
99	Seasonal Gene Expression and the Ecophysiological Implications of Toxic <i>Microcystis aeruginosa</i> Blooms in Lake Taihu. Environmental Science & Technology, 2018, 52, 11049-11059.	4.6	79
100	Effects of Nutrients, Temperature and Their Interactions on Spring Phytoplankton Community Succession in Lake Taihu, China. PLoS ONE, 2014, 9, e113960.	1.1	76
101	Rainfall stimulation of primary production in western Atlantic Ocean waters:roles of different nitrogen sources and co-limiting nutrients. Marine Ecology - Progress Series, 1999, 176, 205-214.	0.9	76
102	SIGNIFICANCE OF BACTERIAL-ANABAENA (CYANOPHYCEAE) ASSOCIATIONS WITH RESPECT TO N2 FIXATION IN FRESHWATER1, 2. Journal of Phycology, 1978, 14, 254-260.	1.0	75
103	Microbial Phototrophic, Heterotrophic, and Diazotrophic Activities Associated with Aggregates in the Permanent Ice Cover of Lake Bonney, Antarctica. Microbial Ecology, 1998, 36, 221-230.	1.4	75
104	Health Effects of Toxic Cyanobacteria in U.S. Drinking and Recreational Waters: Our Current Understanding and Proposed Direction. Current Environmental Health Reports, 2015, 2, 75-84.	3.2	75
105	Climate Change at a Crossroad for Control of Harmful Algal Blooms. Environmental Science & Technology, 2015, 49, 12605-12606.	4.6	75
106	Facultative diazotrophy increases Cylindrospermopsis raciborskii competitiveness under fluctuating nitrogen availability. FEMS Microbiology Ecology, 2012, 79, 800-811.	1.3	73
107	Extreme Weather Events and Climate Variability Provide a Lens to How Shallow Lakes May Respond to Climate Change. Water (Switzerland), 2016, 8, 229.	1.2	73
108	Effects of climatic variability on phytoplankton community structure and bloom development in the eutrophic, microtidal, New River Estuary, North Carolina, USA. Estuarine, Coastal and Shelf Science, 2013, 117, 70-82.	0.9	72

#	Article	IF	CITATIONS
109	Adaptation to High-Intensity, Low-Wavelength Light among Surface Blooms of the Cyanobacterium <i>Microcystis aeruginosa</i> . Applied and Environmental Microbiology, 1985, 49, 1046-1052.	1.4	72
110	Control of nitrogen fixation by oxygen depletion in surface-associated microzones. Nature, 1988, 332, 260-262.	13.7	70
111	Picophytoplankton: A major contributor to planktonic biomass and primary production in a eutrophic, river-dominated estuary. Estuarine, Coastal and Shelf Science, 2010, 90, 45-54.	0.9	69
112	Growth response of Microcystis spp. to iron enrichment in different regions of Lake Taihu, China. Hydrobiologia, 2013, 700, 187-202.	1.0	69
113	Molecular insights into a dinoflagellate bloom. ISME Journal, 2017, 11, 439-452.	4.4	69
114	Hydrologic Variability and Its Control of Phytoplankton Community Structure and Function in Two Shallow, Coastal, Lagoonal Ecosystems: The Neuse and New River Estuaries, North Carolina, USA. Estuaries and Coasts, 2014, 37, 31-45.	1.0	67
115	Phytoplankton uptake of ammonium, nitrate and urea in the Neuse River Estuary, NC, USA. Hydrobiologia, 2005, 533, 123-134.	1.0	66
116	Environmental Factors Contributing to the Development and Demise of a Toxic Dinoflagellate (Karlodinium veneficum) Bloom in a Shallow, Eutrophic, Lagoonal Estuary. Estuaries and Coasts, 2008, 31, 402-418.	1.0	65
117	Severe droughts reduce estuarine primary productivity with cascading effects on higher trophic levels. Limnology and Oceanography, 2011, 56, 627-638.	1.6	65
118	Distribution of nitrogen-fixing microorganisms along the Neuse River Estuary, North Carolina. Microbial Ecology, 2001, 41, 114-123.	1.4	64
119	Formation of Low-Molecular-Weight Dissolved Organic Nitrogen in Predenitrification Biological Nutrient Removal Systems and Its Impact on Eutrophication in Coastal Waters. Environmental Science & Technology, 2017, 51, 3776-3783.	4.6	64
120	Seasonal nitrate cycling as evidence for complete vertical mixing in Lake Tahoe, California-Nevada1. Limnology and Oceanography, 1975, 20, 1-8.	1.6	63
121	Mitigating a global expansion of toxic cyanobacterial blooms: confounding effects and challenges posed by climate change. Marine and Freshwater Research, 2020, 71, 579.	0.7	63
122	The global <i>Microcystis</i> interactome. Limnology and Oceanography, 2020, 65, S194-S207.	1.6	63
123	Salinity control of benthic microbial mat community production in a Bahamian hypersaline lagoon. Journal of Experimental Marine Biology and Ecology, 1995, 187, 223-237.	0.7	62
124	Harmful Algal Blooms. , 2015, , 873-920.		62
125	Water quality trends in the Three Gorges Reservoir region before and after impoundment (1992–2016). Ecohydrology and Hydrobiology, 2019, 19, 317-327.	1.0	58
126	Seasonal nitrogen fixation dynamics in a marine microbial mat: Potential roles of cyanobacteria and microheterotrophs. Limnology and Oceanography, 1996, 41, 419-427.	1.6	57

#	Article	IF	CITATIONS
127	Phylogenetic Inference of Colony Isolates Comprising Seasonal Microcystis Blooms in Lake Taihu, China. Microbial Ecology, 2011, 62, 907-918.	1.4	57
128	Disturbance and recovery of microbial community structure and function following Hurricane Frances. Environmental Microbiology, 2007, 9, 576-583.	1.8	54
129	Long-term trends, current status, and transitions of water quality in Chesapeake Bay. Scientific Reports, 2019, 9, 6709.	1.6	54
130	Modeling blue-green algal blooms in the lower neuse river. Water Research, 1988, 22, 895-905.	5.3	53
131	Microbial organic carbon recovery in aquatic ecosystems1. Limnology and Oceanography, 1978, 23, 927-935.	1.6	52
132	Mississippi River diversions and phytoplankton dynamics in deltaic Gulf of Mexico estuaries: A review. Estuarine, Coastal and Shelf Science, 2019, 221, 39-52.	0.9	52
133	Denitrification rates measured along a salinity gradient in the eutrophic Neuse River estuary, North Carolina, USA. Estuaries and Coasts, 2005, 28, 608-619.	1.7	51
134	Composition of inorganic and organic nutrient sources influences phytoplankton community structure in the New River Estuary, North Carolina. Aquatic Ecology, 2012, 46, 269-282.	0.7	51
135	Nitrogen transformations differentially affect nutrientâ€limited primary production in lakes of varying trophic state. Limnology and Oceanography Letters, 2019, 4, 96-104.	1.6	51
136	Global divergent trends of algal blooms detected by satellite during 1982–2018. Global Change Biology, 2022, 28, 2327-2340.	4.2	51
137	Microscale characterization of dissolved organic matter production and uptake in marine microbial mat communities. Limnology and Oceanography, 1993, 38, 1150-1161.	1.6	50
138	Controlling harmful cyanobacterial blooms in a climatically more extreme world: management options and research needs. Journal of Plankton Research, 2017, 39, 763-771.	0.8	50
139	Co-occurrence of dinoflagellate and cyanobacterial harmful algal blooms in southwest Florida coastal waters: dual nutrient (N and P) input controls. Marine Ecology - Progress Series, 2008, 371, 143-153.	0.9	49
140	Contemporaneous nitrogen fixation and denitrification in intertidal microbial mats: rapid response to runoff events. Marine Ecology - Progress Series, 1993, 94, 267-274.	0.9	49
141	Genetic Variance in the Composition of Two Functional Groups (Diazotrophs and Cyanobacteria) from a Hypersaline Microbial Mat. Applied and Environmental Microbiology, 2006, 72, 1207-1217.	1.4	48
142	Dilution bioassays: Their application to assessments of nutrient limitation in. Hydrobiologia, 1987, 146, 265-273.	1.0	47
143	Precipitation as a driver of phytoplankton ecology in coastal waters: A climatic perspective. Estuarine, Coastal and Shelf Science, 2015, 162, 119-129.	0.9	47
144	Immunofluorescence detection and characterization of N2-fixing microorganisms from aquatic environments. Limnology and Oceanography, 1990, 35, 59-71.	1.6	46

#	Article	IF	CITATIONS
145	Variable climatic conditions dominate recent phytoplankton dynamics in Chesapeake Bay. Scientific Reports, 2016, 6, 23773.	1.6	46
146	Physiological Adaptations in Response to Environmental Stress During an N ₂ -Fixing <i>Anabaena</i> Bloom. Applied and Environmental Microbiology, 1980, 40, 587-595.	1.4	46
147	Sustained viability of aphotic phytoplankton in Lake Tahoe (Californiaâ€Nevada). Limnology and Oceanography, 1977, 22, 84-91.	1.6	44
148	Airâ€water CO ₂ fluxes in the microtidal Neuse River Estuary, North Carolina. Journal of Geophysical Research, 2012, 117, .	3.3	44
149	Carbon budget of a shallow, lagoonal estuary: Transformations and sourceâ€sink dynamics along the riverâ€estuaryâ€ocean continuum. Limnology and Oceanography, 2017, 62, S29.	1.6	43
150	Ubiquity of heterotrophic diazotrophs in marine microbial mats. Aquatic Microbial Ecology, 1999, 19, 29-36.	0.9	43
151	Diazotrophy in Modern Marine Bahamian Stromatolites. Microbial Ecology, 2001, 41, 36-44.	1.4	42
152	Lingering Carbon Cycle Effects of Hurricane Matthew in North Carolina's Coastal Waters. Geophysical Research Letters, 2019, 46, 2654-2661.	1.5	41
153	Feedback between climate change and eutrophication: revisiting the allied attack concept and how to strike back. Inland Waters, 2022, 12, 187-204.	1.1	41
154	Spatiotemporal Variability of Wet Atmospheric Nitrogen Deposition to the Neuse River Estuary, North Carolina. Journal of Environmental Quality, 2001, 30, 1508-1515.	1.0	40
155	Localized Tetrazolium Reduction in Relation to N ₂ Fixation, CO ₂ Fixation, and H ₂ Uptake in Aquatic Filamentous Cyanobacteria. Applied and Environmental Microbiology, 1982, 43, 218-226.	1.4	39
156	Nitrogenase Activity and nifH Expression in a Marine Intertidal Microbial Mat. Microbial Ecology, 2005, 49, 315-324.	1.4	38
157	Green algal over cyanobacterial dominance promoted with nitrogen and phosphorus additions in a mesocosm study at Lake Taihu, China. Environmental Science and Pollution Research, 2015, 22, 5041-5049.	2.7	37
158	Scaling up: the next challenge in environmental microbiology. Environmental Microbiology, 2003, 5, 1025-1038.	1.8	36
159	Hypersaline Cyanobacterial Mats as Indicators of Elevated Tropical Hurricane Activity and Associated Climate Change. Ambio, 2003, 32, 87-90.	2.8	36
160	Extensive CO ₂ emissions from shallow coastal waters during passage of Hurricane Irene (August 2011) over the Midâ€Atlantic Coast of the U.S.A. Limnology and Oceanography, 2014, 59, 1651-1665.	1.6	36
161	Climate exerts a greater modulating effect on the phytoplankton community after 2007 in eutrophic Lake Taihu, China: Evidence from 25†years of recordings. Ecological Indicators, 2019, 105, 82-91.	2.6	36
162	Recent increases of rainfall and flooding from tropical cyclones (TCs) in North Carolina (USA): implications for organic matter and nutrient cycling in coastal watersheds. Biogeochemistry, 2020, 150, 197-216.	1.7	34

#	Article	IF	CITATIONS
163	CHLOROPHYLL <i>A</i> VERSUS ADENOSINE TRIPHOSPHATE AS ALGAL BIOMASS INDICATORS IN LAKES ¹ . Journal of Phycology, 1976, 12, 242-246.	1.0	33
164	Evaluation of nutrient limitation of C02 and N2 fixation in marine microbial mats. Marine Ecology - Progress Series, 1993, 101, 297-306.	0.9	33
165	The Relation Between Adenosine Triphosphate and Microbial Biomass in Diverse Aquatic Ecosystems. International Review of Hydrobiology, 1976, 61, 659-664.	0.6	32
166	Evaluation of Progress in Achieving TMDL Mandated Nitrogen Reductions in the Neuse River Basin, North Carolina. Environmental Management, 2012, 49, 253-266.	1.2	31
167	CO ₂ limited conditions favor cyanobacteria in a hypereutrophic lake: An empirical and theoretical stable isotope study. Limnology and Oceanography, 2018, 63, 1643-1659.	1.6	30
168	Extreme weather event may induce Microcystis blooms in the Qiantang River, Southeast China. Environmental Science and Pollution Research, 2018, 25, 22273-22284.	2.7	30
169	Why does N-limitation persist in the world's marine waters?. Marine Chemistry, 2018, 206, 1-6.	0.9	29
170	Picophytoplankton dynamics in a large temperate estuary and impacts of extreme storm events. Scientific Reports, 2020, 10, 22026.	1.6	29
171	The cyanobacterial nitrogen fixation paradox in natural waters. F1000Research, 2017, 6, 244.	0.8	29
172	Using alkaline phosphatase activity as a supplemental index to optimize predicting algal blooms in phosphorus-deficient lakes: A case study of Lake Taihu, China. Ecological Indicators, 2019, 103, 698-712.	2.6	28
173	<i>Pseudomonas aeruginosa</i> Chemotaxis Associated with Blooms of N ₂ -Fixing Blue-Green Algae (Cyanobacteria). Applied and Environmental Microbiology, 1983, 45, 557-562.	1.4	28
174	Environmental controls of harmful cyanobacterial blooms in Chinese inland waters. Harmful Algae, 2021, 110, 102127.	2.2	28
175	Effects of Nitrogen Availability and Form on Phytoplankton Growth in a Eutrophied Estuary (Neuse) Tj ETQq1 1 C	.784314 1.1	rgBT_/Overloo
176	Nutrient addition bioassay and phytoplankton community structure monitored during autumn in Xiangxi Bay of Three Gorges Reservoir, China. Chemosphere, 2020, 247, 125960.	4.2	27
177	Nitrogen and Marine Eutrophication. , 2008, , 529-567.		26
178	Cyanobacteria in eutrophic waters benefit from rising atmospheric CO2 concentrations. Science of the Total Environment, 2019, 691, 1144-1154.	3.9	26
179	Evaluating the phytoplankton, nitrate, and ammonium interactions during summer bloom in tributary of a subtropical reservoir. Journal of Environmental Management, 2020, 271, 110971.	3.8	24
180	Extreme weather events modulate processing and export of dissolved organic carbon in the Neuse River Estuary, NC. Estuarine, Coastal and Shelf Science, 2019, 219, 189-200.	0.9	23

#	Article	IF	CITATIONS
181	Spatial and temporal distribution characteristics of different forms of inorganic nitrogen in three types of rivers around Lake Taihu, China. Environmental Science and Pollution Research, 2019, 26, 6898-6910.	2.7	22
182	Interactions between nitrogen dynamics and the phytoplankton community in Lake George, Florida, USA. Lake and Reservoir Management, 2009, 25, 1-14.	0.4	21
183	Determining the potential for the proliferation of the harmful cyanobacterium Cylindrospermopsis raciborskii in Currituck Sound, North Carolina. Harmful Algae, 2011, 11, 1-9.	2.2	21
184	Watershed cale Drivers of Airâ€Water CO ₂ Exchanges in Two Lagoonal North Carolina (USA) Estuaries. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 271-287.	1.3	21
185	Effects of salinity and light on organic carbon and nitrogen uptake in a hypersaline microbial mat. FEMS Microbiology Ecology, 2007, 62, 345-353.	1.3	20
186	Stimulation of Phytoplankton Production by Anthropogenic Dissolved Organic Nitrogen in a Coastal Plain Estuary. Environmental Science & Technology, 2017, 51, 13104-13112.	4.6	20
187	Structure and function of anthropogenically altered microbial communities in coastal waters. Current Opinion in Microbiology, 1998, 1, 296-302.	2.3	19
188	Vertical spatio-temporal patterns of phytoplankton due to migration behaviors in two shallow, microtidal estuaries: Influence on phytoplankton function and structure. Estuarine, Coastal and Shelf Science, 2015, 162, 7-21.	0.9	19
189	Phytoplankton composition in a eutrophic estuary: Comparison of multiple taxonomic approaches and influence of environmental factors. Environmental Microbiology, 2020, 22, 4718-4731.	1.8	19
190	Roles of Nutrient Limitation on Western Lake Erie CyanoHAB Toxin Production. Toxins, 2021, 13, 47.	1.5	19
191	Temperature, organic matter, and the control of bacterioplankton in the Neuse River and Pamlico Sound estuarine system. Aquatic Microbial Ecology, 2010, 60, 139-149.	0.9	18
192	Elevated organic carbon pulses persist in estuarine environment after major storm events. Limnology and Oceanography Letters, 2021, 6, 43-50.	1.6	17
193	Determination of N2 fixation potential in the marine environment: application of the polymerase chain reaction. Marine Ecology - Progress Series, 1993, 95, 305-309.	0.9	17
194	Etiologies, observations and reporting of estuarine finfish lesions. Marine Environmental Research, 2000, 50, 473-477.	1.1	16
195	Responses of Estuarine Phytoplankton Communities to Nitrogen Form and Mixing Using Microcosm Bioassays. Estuaries and Coasts, 2001, 24, 828.	1.7	16
196	Marine Plankton. , 2012, , 127-153.		16
197	Nitrate repletion during spring bloom intensifies phytoplankton iron demand in Yangtze River tributary, China. Environmental Pollution, 2020, 264, 114626.	3.7	16
198	FerryMon: Ferry-Based Monitoring and Assessment of Human and Climatically Driven Environmental Change in the Albemarle-Pamlico Sound System. Environmental Science & Technology, 2009, 43, 7609-7613.	4.6	15

#	Article	IF	CITATIONS
199	Use of Geospatial, Hydrologic, and Geochemical Modeling to Determine the Influence of Wetland-Derived Organic Matter in Coastal Waters in Response to Extreme Weather Events. Frontiers in Marine Science, 2020, 7, .	1.2	14
200	Ecological stoichiometry of functional traits in a colonial harmful cyanobacterium. Limnology and Oceanography, 2021, 66, 2051-2062.	1.6	13
201	Exploring How Cyanobacterial Traits Affect Nutrient Loading Thresholds in Shallow Lakes: A Modelling Approach. Water (Switzerland), 2020, 12, 2467.	1.2	12
202	Cyanophycin accumulated under nitrogen-fluctuating and high-nitrogen conditions facilitates the persistent dominance and blooms of Raphidiopsis raciborskii in tropical waters. Water Research, 2022, 214, 118215.	5.3	12
203	Primary Producers. , 2011, , 23-42.		11
204	Eukaryotic phytoplankton community spatiotemporal dynamics as identified through gene expression within a eutrophic estuary. Environmental Microbiology, 2018, 20, 1095-1111.	1.8	11
205	In situ H2 production and utilization by natural populations of N2-fixing blue-green algae. Canadian Journal of Botany, 1982, 60, 2542-2546.	1.2	10
206	Environmental Dynamics, Community Structure and Function in a Hypersaline Microbial Mat. Cellular Origin and Life in Extreme Habitats, 2010, , 421-442.	0.3	9
207	Storm and floods increase the duration and extent of phosphorus limitation on algal blooms in a tributary of the Three Gorges Reservoir, China. Journal of Hydrology, 2022, 607, 127562.	2.3	9
208	Seasonal to Inter-Annual Variability of Primary Production in Chesapeake Bay: Prospects to Reverse Eutrophication and Change Trophic Classification. Scientific Reports, 2020, 10, 2019.	1.6	8
209	Longitudinal and depth variation of bacterioplankton productivity and related factors in a temperate estuary. Estuarine, Coastal and Shelf Science, 2011, 95, 207-215.	0.9	7
210	Nitrogen fixation does not axiomatically lead to phosphorus limitation in aquatic ecosystems. Oikos, 2019, 128, 563-570.	1.2	7
211	Consortial N2 fixation: a strategy for meeting nitrogen requirements of marine and terrestrial cyanobacterial mats. FEMS Microbiology Ecology, 1996, 21, 149-156.	1.3	6
212	SCOR Working Group 137: "Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems― An introduction to the special issue of Estuarine, Coastal and Shelf Science. Estuarine, Coastal and Shelf Science, 2015, 162, 1-3.	0.9	5
213	Effects of Ferrous Iron and Hydrogen Sulfide on Nitrate Reduction in the Sediments of an Estuary Experiencing Hypoxia. Estuaries and Coasts, 2021, 44, 1-12.	1.0	5
214	Riverine Discharge and Phytoplankton Biomass Control Dissolved and Particulate Organic Matter Dynamics over Spatial and Temporal Scales in the Neuse River Estuary, North Carolina. Estuaries and Coasts, 2022, 45, 96-113.	1.0	4
215	Simulating algal dynamics within a Bayesian framework to evaluate controls on estuary productivity. Ecological Modelling, 2021, 447, 109497.	1.2	4
216	Ecosystem Capacity for Microbial Biodegradation of Munitions Compounds and Phenanthrene in Three Coastal Waterways in North Carolina, United States. ACS Omega, 2020, 5, 7326-7341.	1.6	3

#	Article	IF	CITATIONS
217	Tackling Harmful Cyanobacterial Blooms with Chinese Colleagues: We're All in the Same Boat. Journal of Phycology, 2020, 56, 1398-1403.	1.0	2
218	Corrigendum to: The global <i>Microcystis</i> interactome. Limnology and Oceanography, 2021, 66, 2496-2497.	1.6	2
219	Nutrients in precipitation and the phytoplankton responses to enrichment in surface waters of the Albemarle Peninsula, NC, USA after the establishment of a large-scale chicken egg farm. Hydrobiologia, 2011, 671, 181-191.	1.0	1
220	Ecosystem-based management for military training, biodiversity, carbon storage and climate resiliency on a complex coastal land/water-scape. Journal of Environmental Management, 2021, 280, 111755.	3.8	1
221	Karl E. Havens: Leader and Collaborator in Coupling Aquatic Science and Management. Limnology and Oceanography Bulletin, 2019, 28, 94-95.	0.2	0
222	Impacts of Nitrogen Deposition on China's Lake Ecosystems: Taking Lake Dianchi as an Example. , 2020, , 263-293.		0