Deng Shubo

List of Publications by Citations

Source: https://exaly.com/author-pdf/8239553/deng-shubo-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

9,158 149 91 53 h-index g-index citations papers 6.46 11,246 9.8 154 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
149	Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study. <i>Water Research</i> , 2009 , 43, 1150-8	12.5	454
148	Adsorption behavior and mechanism of perfluorinated compounds on various adsorbentsa review. Journal of Hazardous Materials, 2014 , 274, 443-54	12.8	438
147	Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr(VI) anions: sorption capacity and uptake mechanisms. <i>Environmental Science & Environmental Scie</i>	10.3	286
146	First report of a Chinese PFOS alternative overlooked for 30 years: its toxicity, persistence, and presence in the environment. <i>Environmental Science & Environmental & Envir</i>	10.3	277
145	Granular bamboo-derived activated carbon for high CO(2) adsorption: the dominant role of narrow micropores. <i>ChemSusChem</i> , 2012 , 5, 2354-60	8.3	252
144	Selective removal of perfluorooctane sulfonate from aqueous solution using chitosan-based molecularly imprinted polymer adsorbents. <i>Water Research</i> , 2008 , 42, 3089-97	12.5	232
143	As(V) and As(III) removal from water by a Celli oxide adsorbent: Behavior and mechanism. <i>Chemical Engineering Journal</i> , 2010 , 161, 106-113	14.7	220
142	Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. <i>Journal of Hazardous Materials</i> , 2016 , 305, 156-163	12.8	202
141	Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: effects of resin properties and solution chemistry. <i>Water Research</i> , 2010 , 44, 5188-95	12.5	192
140	Sorption mechanisms of perfluorinated compounds on carbon nanotubes. <i>Environmental Pollution</i> , 2012 , 168, 138-44	9.3	167
139	Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review. <i>Separation and Purification Technology</i> , 2019 , 224, 373-387	8.3	162
138	Mn-Ce oxide as a high-capacity adsorbent for fluoride removal from water. <i>Journal of Hazardous Materials</i> , 2011 , 186, 1360-6	12.8	153
137	Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon. <i>Journal of Hazardous Materials</i> , 2015 , 282, 150-7	12.8	150
136	Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures. <i>Chemical Engineering Journal</i> , 2014 , 253, 46-54	14.7	149
135	Production of a bioflocculant by Aspergillus parasiticus and its application in dye removal. <i>Colloids and Surfaces B: Biointerfaces</i> , 2005 , 44, 179-86	6	139
134	Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China. <i>Chemosphere</i> , 2015 , 119, 1033-1039	8.4	138
133	Destruction of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) by ball milling. <i>Environmental Science & Environmental Science & En</i>	10.3	133

132	Preparation of Al-Ce hybrid adsorbent and its application for defluoridation of drinking water. Journal of Hazardous Materials, 2010 , 179, 424-30	12.8	132
131	Degradation of Ofloxacin by Perylene Diimide Supramolecular Nanofiber Sunlight-Driven Photocatalysis. <i>Environmental Science & Environmental &</i>	10.3	125
130	Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: sorption kinetics and uptake mechanism. <i>Bioresource Technology</i> , 2011 , 102, 2265-71	11	119
129	Degradation of the anti-inflammatory drug ibuprofen by electro-peroxone process. <i>Water Research</i> , 2014 , 63, 81-93	12.5	117
128	Removal of perfluorinated carboxylates from washing wastewater of perfluorooctanesulfonyl fluoride using activated carbons and resins. <i>Journal of Hazardous Materials</i> , 2015 , 286, 136-43	12.8	117
127	Characterization of pharmaceutically active compounds in Dongting Lake, China: Occurrence, chiral profiling and environmental risk. <i>Science of the Total Environment</i> , 2016 , 557-558, 268-75	10.2	112
126	Novel crosslinked chitosan for enhanced adsorption of hexavalent chromium in acidic solution. <i>Chemical Engineering Journal</i> , 2018 , 347, 782-790	14.7	111
125	Activated carbons and amine-modified materials for carbon dioxide capture he review. Frontiers of Environmental Science and Engineering, 2013, 7, 326-340	5.8	111
124	Ball milling synthesized MnOx as highly active catalyst for gaseous POPs removal: significance of mechanochemically induced oxygen vacancies. <i>Environmental Science & Environmental &</i>	- 1 80·3	107
123	Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O/HO), and an electro-peroxone process. <i>Water Research</i> , 2018 , 130, 127-138	12.5	102
122	Sorption of perfluorooctane sulfonate on organo-montmorillonites. <i>Chemosphere</i> , 2010 , 78, 688-94	8.4	100
121	Characterization of pharmaceutically active compounds in Beijing, China: Occurrence pattern, spatiotemporal distribution and its environmental implication. <i>Journal of Hazardous Materials</i> , 2017 , 323, 147-155	12.8	96
120	Ozonation of trimethoprim in aqueous solution: identification of reaction products and their toxicity. <i>Water Research</i> , 2013 , 47, 2863-72	12.5	93
119	Activated carbons prepared from peanut shell and sunflower seed shell for high CO2 adsorption. <i>Adsorption</i> , 2015 , 21, 125-133	2.6	91
118	Removal of pharmaceuticals from secondary effluents by an electro-peroxone process. <i>Water Research</i> , 2016 , 88, 826-835	12.5	90
117	Integrated adsorption and visible-light photodegradation of aqueous clofibric acid and carbamazepine by a Fe-based metal-organic framework. <i>Chemical Engineering Journal</i> , 2017 , 330, 157-16	6 5 4.7	89
116	Mechanisms of enhanced total organic carbon elimination from oxalic acid solutions by electro-peroxone process. <i>Water Research</i> , 2015 , 80, 20-9	12.5	83
115	Differences in the seasonal variation of brominated and phosphorus flame retardants in office dust. <i>Environment International</i> , 2014 , 65, 100-6	12.9	80

114	Preparation, characterization and application of a Ce-Ti oxide adsorbent for enhanced removal of arsenate from water. <i>Journal of Hazardous Materials</i> , 2010 , 179, 1014-21	12.8	80
113	Stable Covalent Organic Frameworks as Efficient Adsorbents for High and Selective Removal of an Aryl-Organophosphorus Flame Retardant from Water. <i>ACS Applied Materials & Discrete Materials</i> (10, 30265-30272)	9.5	78
112	Degradation of sulfamethazine by persulfate activated with organo-montmorillonite supported nano-zero valent iron. <i>Chemical Engineering Journal</i> , 2019 , 361, 99-108	14.7	77
111	Enhanced adsorption of arsenate on the aminated fibers: sorption behavior and uptake mechanism. <i>Langmuir</i> , 2008 , 24, 10961-7	4	74
110	Adsorption and catalytic oxidation of pharmaceuticals by nitrogen-doped reduced graphene oxide/Fe3O4 nanocomposite. <i>Chemical Engineering Journal</i> , 2018 , 341, 361-370	14.7	73
109	Characterization and human exposure assessment of organophosphate flame retardants in indoor dust from several microenvironments of Beijing, China. <i>Chemosphere</i> , 2016 , 150, 465-471	8.4	73
108	Competitive adsorption of perfluoroalkyl substances on anion exchange resins in simulated AFFF-impacted groundwater. <i>Chemical Engineering Journal</i> , 2018 , 348, 494-502	14.7	72
107	A comparative study of rigid and flexible MOFs for the adsorption of pharmaceuticals: Kinetics, isotherms and mechanisms. <i>Journal of Hazardous Materials</i> , 2018 , 359, 248-257	12.8	70
106	Adsorption behavior and mechanism of emerging perfluoro-2-propoxypropanoic acid (GenX) on activated carbons and resins. <i>Chemical Engineering Journal</i> , 2019 , 364, 132-138	14.7	67
105	Activation of persulfate by modified drinking water treatment residuals for sulfamethoxazole degradation. <i>Chemical Engineering Journal</i> , 2018 , 353, 490-498	14.7	67
104	Adsorption of perfluorinated compounds on aminated rice husk prepared by atom transfer radical polymerization. <i>Chemosphere</i> , 2013 , 91, 124-30	8.4	66
103	Contaminants of emerging concern in landfill leachate in China: A review. <i>Emerging Contaminants</i> , 2018 , 4, 1-10	5.8	66
102	Adsorptive removal of emerging polyfluoroalky substances F-53B and PFOS by anion-exchange resin: A comparative study. <i>Journal of Hazardous Materials</i> , 2017 , 323, 550-557	12.8	64
101	Emission inventory for PFOS in China: review of past methodologies and suggestions. <i>Scientific World Journal, The</i> , 2011 , 11, 1963-80	2.2	64
100	The electro-peroxone process for the abatement of emerging contaminants: Mechanisms, recent advances, and prospects. <i>Chemosphere</i> , 2018 , 208, 640-654	8.4	62
99	Occurrence of organophosphorus flame retardants on skin wipes: Insight into human exposure from dermal absorption. <i>Environment International</i> , 2017 , 98, 113-119	12.9	59
98	CO2 adsorption on crab shell derived activated carbons: contribution of micropores and nitrogen-containing groups. <i>RSC Advances</i> , 2015 , 5, 48323-48330	3.7	59
97	Au(III) adsorption and reduction to gold particles on cost-effective tannin acid immobilized dialdehyde corn starch. <i>Chemical Engineering Journal</i> , 2019 , 370, 228-236	14.7	55

(2016-2019)

96	Efficient degradation of carbamazepine by organo-montmorillonite supported nCoFe2O4-activated peroxymonosulfate process. <i>Chemical Engineering Journal</i> , 2019 , 368, 824-836	14.7	53	
95	The competition between cathodic oxygen and ozone reduction and its role in dictating the reaction mechanisms of an electro-peroxone process. <i>Water Research</i> , 2017 , 118, 26-38	12.5	52	
94	Electro-peroxone treatment of the antidepressant venlafaxine: Operational parameters and mechanism. <i>Journal of Hazardous Materials</i> , 2015 , 300, 298-306	12.8	50	
93	Typical pharmaceuticals in major WWTPs in Beijing, China: Occurrence, load pattern and calculation reliability. <i>Water Research</i> , 2018 , 140, 291-300	12.5	50	
92	Perchlorate formation during the electro-peroxone treatment of chloride-containing water: Effects of operational parameters and control strategies. <i>Water Research</i> , 2016 , 88, 691-702	12.5	50	
91	Role of air bubbles overlooked in the adsorption of perfluorooctanesulfonate on hydrophobic carbonaceous adsorbents. <i>Environmental Science & Environmental Science & Environm</i>	10.3	50	
90	Removal of perfluorooctanoate from surface water by polyaluminium chloride coagulation. <i>Water Research</i> , 2011 , 45, 1774-80	12.5	50	
89	As(III) and As(V) adsorption on nanocomposite of hydrated zirconium oxide coated carbon nanotubes. <i>Journal of Colloid and Interface Science</i> , 2018 , 511, 277-284	9.3	48	
88	Prediction of micropollutant abatement during homogeneous catalytic ozonation by a chemical kinetic model. <i>Water Research</i> , 2018 , 142, 383-395	12.5	48	
87	Enhanced removal of pentachlorophenol and 2,4-D from aqueous solution by an aminated biosorbent. <i>Journal of Hazardous Materials</i> , 2009 , 165, 408-14	12.8	47	
86	Ozonation of indomethacin: Kinetics, mechanisms and toxicity. <i>Journal of Hazardous Materials</i> , 2017 , 323, 460-470	12.8	46	
85	Selective and Fast Adsorption of Perfluorooctanesulfonate from Wastewater by Magnetic Fluorinated Vermiculite. <i>Environmental Science & Environmental </i>	10.3	45	
84	Fate and removal of typical pharmaceutical and personal care products in a wastewater treatment plant from Beijing: a mass balance study. <i>Frontiers of Environmental Science and Engineering</i> , 2016 , 10, 491-501	5.8	44	
83	Adsorption behavior and mechanism of perfluorooctane sulfonate on nanosized inorganic oxides. Journal of Colloid and Interface Science, 2016 , 474, 199-205	9.3	44	
82	Understanding the adsorption of sulfonamide antibiotics on MIL-53s: Metal dependence of breathing effect and adsorptive performance in aqueous solution. <i>Journal of Colloid and Interface Science</i> , 2019 , 535, 159-168	9.3	44	
81	Hydrophilic and strengthened 3D reduced graphene oxide/nano-Fe3O4 hybrid hydrogel for enhanced adsorption and catalytic oxidation of typical pharmaceuticals. <i>Environmental Science:</i> Nano, 2018, 5, 1650-1660	7.1	43	
80	Nanoscale zero valent iron-activated persulfate coupled with Fenton oxidation process for typical pharmaceuticals and personal care products degradation. <i>Separation and Purification Technology</i> , 2020 , 239, 116534	8.3	42	
79	Estimating the use of antibiotics for humans across China. <i>Chemosphere</i> , 2016 , 144, 1384-90	8.4	40	

78	Characterization and demulsification of produced liquid from weak base ASP flooding. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2006 , 290, 164-171	5.1	40
77	Characterization of suspended solids in produced water in Daqing oilfield. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2009 , 332, 63-69	5.1	38
76	Highly efficient removal of enrofloxacin by magnetic montmorillonite via adsorption and persulfate oxidation. <i>Chemical Engineering Journal</i> , 2019 , 360, 1119-1127	14.7	38
75	Regeneration of Chitosan-Based Adsorbents for Eliminating Dyes from Aqueous Solutions. <i>Separation and Purification Reviews</i> , 2019 , 48, 1-13	7.3	38
74	Efficient removal of perfluorinated compounds from water using a regenerable magnetic activated carbon. <i>Chemosphere</i> , 2019 , 224, 187-194	8.4	37
73	Linking the environmental loads to the fate of PPCPs in Beijing: Considering both the treated and untreated wastewater sources. <i>Environmental Pollution</i> , 2015 , 202, 153-9	9.3	37
72	Mechanochemical degradation of hexabromocyclododecane and approaches for the remediation of its contaminated soil. <i>Chemosphere</i> , 2014 , 116, 40-5	8.4	36
71	Highly efficient removal of hexavalent chromium from electroplating wastewater using aminated wheat straw. <i>RSC Advances</i> , 2016 , 6, 8797-8805	3.7	34
70	Defect engineered oxides for enhanced mechanochemical destruction of halogenated organic pollutants. <i>Chemosphere</i> , 2017 , 184, 879-883	8.4	34
69	Selective sorption of perfluorooctane sulfonate on molecularly imprinted polymer adsorbents. <i>Frontiers of Environmental Science and Engineering in China</i> , 2009 , 3, 171-177		33
68	Removal of fluoride from water using titanium-based adsorbents. <i>Frontiers of Environmental Science and Engineering in China</i> , 2010 , 4, 414-420		33
67	Preparation of porous graphene oxide by chemically intercalating a rigid molecule for enhanced removal of typical pharmaceuticals. <i>Carbon</i> , 2017 , 119, 101-109	10.4	32
66	Preparation of regenerable granular carbon nanotubes by a simple heating-filtration method for		22
	efficient removal of typical pharmaceuticals. <i>Chemical Engineering Journal</i> , 2016 , 294, 353-361	14.7	32
65		14.7	
6 ₅	efficient removal of typical pharmaceuticals. <i>Chemical Engineering Journal</i> , 2016 , 294, 353-361 Effects of microplastics on the uptake, distribution and biotransformation of chiral antidepressant		
	efficient removal of typical pharmaceuticals. <i>Chemical Engineering Journal</i> , 2016 , 294, 353-361 Effects of microplastics on the uptake, distribution and biotransformation of chiral antidepressant venlafaxine in aquatic ecosystem. <i>Journal of Hazardous Materials</i> , 2018 , 359, 104-112 Mechanochemical destruction of decabromodiphenyl ether into visible light photocatalyst BiOBr.	12.8	31
64	efficient removal of typical pharmaceuticals. <i>Chemical Engineering Journal</i> , 2016 , 294, 353-361 Effects of microplastics on the uptake, distribution and biotransformation of chiral antidepressant venlafaxine in aquatic ecosystem. <i>Journal of Hazardous Materials</i> , 2018 , 359, 104-112 Mechanochemical destruction of decabromodiphenyl ether into visible light photocatalyst BiOBr. <i>RSC Advances</i> , 2014 , 4, 14719-14724 Estimation of human exposure to halogenated flame retardants through dermal adsorption by skin	12.8 3·7	31

60	Bromate removal from water by polypyrrole tailored activated carbon. <i>Journal of Colloid and Interface Science</i> , 2016 , 467, 10-16	9.3	28	
59	Decomplexation removal of Ni(II)-citrate complexes through heterogeneous Fenton-like process using novel CuO-CeO-CoO composite nanocatalyst. <i>Journal of Hazardous Materials</i> , 2019 , 374, 167-176	12.8	27	
58	A primary estimate of global PCDD/F release based on the quantity and quality of national economic and social activities. <i>Chemosphere</i> , 2016 , 151, 303-9	8.4	27	
57	Adsorptive recovery of Au(III) from aqueous solution using crosslinked polyethyleneimine resins. <i>Chemosphere</i> , 2020 , 241, 125122	8.4	27	
56	Effects of zero-valent metals together with quartz sand on the mechanochemical destruction of dechlorane plus coground in a planetary ball mill. <i>Journal of Hazardous Materials</i> , 2014 , 264, 230-5	12.8	26	
55	Powdered activated coke for COD removal in the advanced treatment of mixed chemical wastewaters and regeneration by Fenton oxidation. <i>Chemical Engineering Journal</i> , 2019 , 371, 631-638	14.7	25	
54	Occurrence, elimination, enantiomeric distribution and intra-day variations of chiral pharmaceuticals in major wastewater treatment plants in Beijing, China. <i>Environmental Pollution</i> , 2018 , 239, 473-482	9.3	25	
53	Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes. <i>Frontiers of Environmental Science and Engineering</i> , 2015 , 9, 784-792	5.8	24	
52	Removal of micropollutants by an electrochemically driven UV/chlorine process for decentralized water treatment. <i>Water Research</i> , 2020 , 183, 116115	12.5	23	
51	Efficient removal of perfluorooctane sulfonate from aqueous film-forming foam solution by aeration-foam collection. <i>Chemosphere</i> , 2018 , 203, 263-270	8.4	23	
50	Intercalation of rigid molecules between carbon nanotubes for adsorption enhancement of typical pharmaceuticals. <i>Chemical Engineering Journal</i> , 2018 , 332, 102-108	14.7	23	
49	Adsorptive removal of organophosphate flame retardants from water by non-ionic resins. <i>Chemical Engineering Journal</i> , 2018 , 354, 105-112	14.7	23	
48	Removal of clofibric acid from aqueous solution by polyethylenimine-modified chitosan beads. <i>Frontiers of Environmental Science and Engineering</i> , 2014 , 8, 675-682	5.8	23	
47	Superhigh adsorption of perfluorooctane sulfonate on aminated polyacrylonitrile fibers with the assistance of air bubbles. <i>Chemical Engineering Journal</i> , 2017 , 315, 108-114	14.7	21	
46	Preparation of aminated cross-linked chitosan beads for efficient adsorption of hexavalent chromium. <i>International Journal of Biological Macromolecules</i> , 2019 , 139, 352-360	7.9	21	
45	Novel insights into the competitive adsorption behavior and mechanism of per- and polyfluoroalkyl substances on the anion-exchange resin. <i>Journal of Colloid and Interface Science</i> , 2019 , 557, 655-663	9.3	21	
44	Rapid determination of pharmaceuticals from multiple therapeutic classes in wastewater by solid-phase extraction and ultra-performance liquid chromatography tandem mass spectrometry. <i>Science Bulletin</i> , 2009 , 54, 4633-4643	10.6	20	
43	Recovery of Ni(II) from real electroplating wastewater using fixed-bed resin adsorption and subsequent electrodeposition. <i>Frontiers of Environmental Science and Engineering</i> , 2019 , 13, 1	5.8	20	

42	Effect of high energy ball milling on organic pollutant adsorption properties of chitosan. <i>International Journal of Biological Macromolecules</i> , 2020 , 148, 543-549	7.9	19
41	Modelling of emerging contaminant removal during heterogeneous catalytic ozonation using chemical kinetic approaches. <i>Journal of Hazardous Materials</i> , 2019 , 380, 120888	12.8	18
40	Unveiling formation mechanism of carcinogenic N-nitrosodimethylamine in ozonation of dimethylamine: a density functional theoretical investigation. <i>Journal of Hazardous Materials</i> , 2014 , 279, 330-5	12.8	18
39	Deriving acute and chronic predicted no effect concentrations of pharmaceuticals and personal care products based on species sensitivity distributions. <i>Ecotoxicology and Environmental Safety</i> , 2017 , 144, 537-542	7	18
38	Elucidating ozonation mechanisms of organic micropollutants based on DFT calculations: Taking sulfamethoxazole as a case. <i>Environmental Pollution</i> , 2017 , 220, 971-980	9.3	18
37	Efficient degradation of typical pharmaceuticals in water using a novel TiO/ONLH nano-photocatalyst under natural sunlight. <i>Journal of Hazardous Materials</i> , 2021 , 403, 123582	12.8	18
36	Removal of low concentrations of nickel ions in electroplating wastewater by combination of electrodialysis and electrodeposition. <i>Chemosphere</i> , 2021 , 263, 128208	8.4	18
35	Mechanochemical conversion of brominated POPs into useful oxybromides: a greener approach. <i>Scientific Reports</i> , 2016 , 6, 28394	4.9	17
34	Enhanced adsorption of diclofenac sodium on the carbon nanotubes-polytetrafluorethylene electrode and subsequent degradation by electro-peroxone treatment. <i>Journal of Colloid and Interface Science</i> , 2017 , 488, 142-148	9.3	17
33	Calcined electroplating sludge as a novel bifunctional material for removing Ni(II)-citrate in electroplating wastewater. <i>Journal of Cleaner Production</i> , 2020 , 262, 121416	10.3	16
32	Adsorption of perfluorooctane sulfonate on carbon nanotubes: influence of pH and competitive ions. <i>Water Science and Technology</i> , 2014 , 69, 1489-95	2.2	16
31	Regeneration of PFOS loaded activated carbon by hot water and subsequent aeration enrichment of PFOS from eluent. <i>Carbon</i> , 2018 , 134, 199-206	10.4	15
30	Granular reduced graphene oxide/FeO hydrogel for efficient adsorption and catalytic oxidation of p-perfluorous nonenoxybenzene sulfonate. <i>Journal of Hazardous Materials</i> , 2020 , 386, 121662	12.8	15
29	Cationic covalent organic framework for efficient removal of PFOA substitutes from aqueous solution. <i>Chemical Engineering Journal</i> , 2021 , 412, 127509	14.7	14
28	Effective mineralization of anti-epilepsy drug carbamazepine in aqueous solution by simultaneously electro-generated H2O2/O3 process. <i>Electrochimica Acta</i> , 2018 , 290, 203-210	6.7	13
27	Unintentional formed PCDDs, PCDFs, and DL-PCBs as impurities in Chinese pentachloronitrobenzene products. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 14462-70	5.1	12
26	Characteristics of pharmaceutically active compounds in surface water in Beijing, China: Occurrence, spatial distribution and biennial variation from 2013 to 2017. <i>Environmental Pollution</i> , 2020 , 264, 114753	9.3	12
25	Screening of textile finishing agents available on the Chinese market: An important source of perand polyfluoroalkyl substances to the environment. <i>Frontiers of Environmental Science and Engineering</i> , 2019 , 13, 1	5.8	12

(2021-2021)

24	Mechanochemically synthesized S-2VIbm composites for the activation of persulfate in the pH-independent degradation of atrazine: Effects of sulfur dose and ball-milling conditions. Chemical Engineering Journal, 2021, 423, 129789	14.7	12
23	Effect of hydro-oleophobic perfluorocarbon chain on interfacial behavior and mechanism of perfluorooctane sulfonate in oil-water mixture. <i>Scientific Reports</i> , 2017 , 7, 44694	4.9	11
22	Combination of ozonation and electrolysis process to enhance elimination of thirty structurally diverse pharmaceuticals in aqueous solution. <i>Journal of Hazardous Materials</i> , 2019 , 368, 281-291	12.8	10
21	Efficient removal of CO2 from indoor air using a polyethyleneimine-impregnated resin and its low-temperature regeneration. <i>Chemical Engineering Journal</i> , 2020 , 399, 125734	14.7	9
20	Ozonation of the algaecide irgarol: Kinetics, transformation products, and toxicity. <i>Chemosphere</i> , 2019 , 236, 124374	8.4	9
19	Bioanalytical characterization of dioxin-like activity in sewage sludge from Beijing, China. <i>Chemosphere</i> , 2009 , 75, 649-653	8.4	9
18	Role of the air-water interface in removing perfluoroalkyl acids from drinking water by activated carbon treatment. <i>Journal of Hazardous Materials</i> , 2020 , 386, 121981	12.8	9
17	Rapid mechanochemical synthesis of VOx/TiO2 as highly active catalyst for HCB removal. <i>Chemosphere</i> , 2015 , 141, 197-204	8.4	8
16	Adsorption behavior and mechanism of Au(III) on caffeic acid functionalized viscose staple fibers. <i>Chemosphere</i> , 2020 , 253, 126704	8.4	8
15	Removal of low concentrations of nickel ions in electroplating wastewater using capacitive deionization technology. <i>Chemosphere</i> , 2021 , 284, 131341	8.4	8
14	Relationship between Oxidation Products and Estrogenic Activity during Ozonation of 4-Nonylphenol. <i>Ozone: Science and Engineering</i> , 2008 , 30, 120-126	2.4	6
13	Removal of Humic Acid Using PEI-Modified Fungal Biomass. <i>Separation Science and Technology</i> , 2006 , 41, 2989-3002	2.5	6
12	Preparation of magnetic powdered carbon/nano-FeO composite for efficient adsorption and degradation of trichloropropyl phosphate from water. <i>Journal of Hazardous Materials</i> , 2021 , 416, 12576	1 2.8	6
11	Can the commonly used quenching method really evaluate the role of reactive oxygen species in pollutant abatement during catalytic ozonation?. <i>Water Research</i> , 2022 , 215, 118275	12.5	6
10	Catalytic decomposition of dioxins and other unintentional POPs in flue gas from a municipal waste incinerator (MWI) in China: a pilot testing. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 31799	9 ⁵ 3 ¹ 180	4 ⁵
9	Rapid Removal of Perfluoroalkanesulfonates from Water by Ecyclodextrin Covalent Organic Frameworks. <i>ACS Applied Materials & Acs Applied & A</i>	9.5	4
8	Determination of 41 polybrominated diphenyl ethers in soil using a pressurised solvent extraction and GC-NCI-MS method. <i>International Journal of Environmental Analytical Chemistry</i> , 2011 , 91, 1135-115	o ^{1.8}	3
7	Contribution of Nanobubbles for PFAS Adsorption on Graphene and OH- and NH-Functionalized Graphene: Comparing Simulations with Experimental Results. <i>Environmental Science & Environmental Science & </i>	10.3	3

6	Environmental applications and implications of nanotechnologies. <i>Frontiers of Environmental Science and Engineering</i> , 2015 , 9, 745-745	5.8	2
5	Degradation of OBS (Sodium -Perfluorous Nonenoxybenzenesulfonate) as a Novel Per- and Polyfluoroalkyl Substance by UV/Persulfate and UV/Sulfite: Fluorinated Intermediates and Treatability in Fluoroprotein Foam <i>Environmental Science & Environmental Science & Environme</i>	10.3	2
4	Regenerable magnetic octahedral layer catalyst for gaseous UPOPs removal. <i>Journal of Hazardous Materials</i> , 2014 , 280, 627-35	12.8	1
3	Removal of low-concentration nickel in electroplating wastewater via incomplete decomplexation by ozonation and subsequent resin adsorption. <i>Chemical Engineering Journal</i> , 2022 , 435, 134923	14.7	O
2	Mechanochemical synthesis of catalysts and reagents for water decontamination: Recent advances and perspective <i>Science of the Total Environment</i> , 2022 , 153992	10.2	O
1	Identifying Pollution Sources in Surface Water Using a Fluorescence Fingerprint Technique in an Analytical Chemistry Laboratory Experiment for Advanced Undergraduates. <i>Journal of Chemical Education</i> , 2022 , 99, 932-940	2.4	O