Wei Lu

List of Publications by Citations

Source: https://exaly.com/author-pdf/823954/wei-lu-publications-by-citations.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 24,774 145 457 h-index g-index citations papers 28,366 7.4 502 7.03 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
457	Improved synthesis of graphene oxide. ACS Nano, 2010 , 4, 4806-14	16.7	8269
456	Observation of conducting filament growth in nanoscale resistive memories. <i>Nature Communications</i> , 2012 , 3, 732	17.4	782
455	Ultrasensitive and Broadband MoSIPhotodetector Driven by Ferroelectrics. <i>Advanced Materials</i> , 2015 , 27, 6575-81	24	559
454	High-density crossbar arrays based on a Si memristive system. <i>Nano Letters</i> , 2009 , 9, 870-4	11.5	441
453	Surface Plasmon-Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays. <i>Small</i> , 2015 , 11, 2392-8	11	292
452	Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. <i>Science Advances</i> , 2017 , 3, e1700589	14.3	269
451	Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage. <i>Electrochemistry Communications</i> , 2011 , 13, 657-660	5.1	247
450	Design of Hierarchical Ni?Co@Ni?Co Layered Double Hydroxide CoreBhell Structured Nanotube Array for High-Performance Flexible All-Solid-State Battery-Type Supercapacitors. <i>Advanced Functional Materials</i> , 2017 , 27, 1605307	15.6	230
449	Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. <i>Nature Communications</i> , 2018 , 9, 4164	17.4	210
448	Single InAs nanowire room-temperature near-infrared photodetectors. ACS Nano, 2014, 8, 3628-35	16.7	202
447	Nanoscale resistive switching devices: mechanisms and modeling. <i>Nanoscale</i> , 2013 , 5, 10076-92	7.7	197
446	Simultaneous Realization of Phase/Size Manipulation, Upconversion Luminescence Enhancement, and Blood Vessel Imaging in Multifunctional Nanoprobes Through Transition Metal Mn2+ Doping. <i>Advanced Functional Materials</i> , 2014 , 24, 4051-4059	15.6	190
445	Controlled Synthesis of 2D Palladium Diselenide for Sensitive Photodetector Applications. <i>Advanced Functional Materials</i> , 2019 , 29, 1806878	15.6	187
444	Tunable blue-green-emitting Ba3LaNa(PO4)3F:Eu2+,Tb3+ phosphor with energy transfer for near-UV white LEDs. <i>Inorganic Chemistry</i> , 2013 , 52, 10340-6	5.1	185
443	Recent Progress on Localized Field Enhanced Two-dimensional Material Photodetectors from Ultraviolet-Visible to Infrared. <i>Small</i> , 2017 , 13, 1700894	11	181
442	Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries. <i>Scientific Reports</i> , 2013 , 3, 1910	4.9	178
441	Nitrogen-Doped Carbon for Sodium-Ion Battery Anode by Self-Etching and Graphitization of Bimetallic MOF-Based Composite. <i>CheM</i> , 2017 , 3, 152-163	16.2	171

(2014-2015)

440	Hierarchical porous plasmonic metamaterials for reproducible ultrasensitive surface-enhanced Raman spectroscopy. <i>Advanced Materials</i> , 2015 , 27, 1090-6	24	162
439	Arrayed Van Der Waals Broadband Detectors for Dual-Band Detection. <i>Advanced Materials</i> , 2017 , 29, 1604439	24	161
438	A novel efficient Mn4+ activated Ca14Al10Zn6O35 phosphor: application in red-emitting and white LEDs. <i>Inorganic Chemistry</i> , 2014 , 53, 11985-90	5.1	161
437	Superior Potassium Ion Storage via Vertical MoS "Nano-Rose" with Expanded Interlayers on Graphene. <i>Small</i> , 2017 , 13, 1701471	11	161
436	Tunable color of Ce3+/Tb3+/Mn(2+)-coactivated CaScAlSiO6 via energy transfer: a single-component red/white-emitting phosphor. <i>Inorganic Chemistry</i> , 2013 , 52, 3007-12	5.1	153
435	Large Energy Storage Density and High Thermal Stability in a Highly Textured (111)-Oriented Pb0.8Ba0.2ZrO3 Relaxor Thin Film with the Coexistence of Antiferroelectric and Ferroelectric Phases. <i>ACS Applied Materials & Description</i> (12) Applied Materials (13) Applied Materials (14) Applied Materials (14) Applied Materials (15) Applied Materials (16) Applied Materials (17) Applied Material	9.5	148
434	Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes. <i>Nature Communications</i> , 2016 , 7, 12206	17.4	147
433	Palladium Diselenide Long-Wavelength Infrared Photodetector with High Sensitivity and Stability. <i>ACS Nano</i> , 2019 , 13, 2511-2519	16.7	144
432	Giant Electric Energy Density in Epitaxial Lead-Free Thin Films with Coexistence of Ferroelectrics and Antiferroelectrics. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500052	6.4	141
431	Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. <i>NPG Asia Materials</i> , 2018 , 10, 352-362	10.3	136
430	Anomalous and highly efficient InAs nanowire phototransistors based on majority carrier transport at room temperature. <i>Advanced Materials</i> , 2014 , 26, 8203-9	24	133
429	High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nature Communications, 2019, 10, 4663	17.4	127
428	Porous platinum nanowire arrays for direct ethanol fuel cell applications. <i>Chemical Communications</i> , 2009 , 195-7	5.8	127
427	Ferroelectric-Enhanced Polysulfide Trapping for Lithium-Sulfur Battery Improvement. <i>Advanced Materials</i> , 2017 , 29, 1604724	24	124
426	Sr3GdNa(PO4)3F:Eu2+,Mn2+: a potential color tunable phosphor for white LEDs. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 90-97	7.1	124
425	Toward Dendrite-Free Lithium Deposition via Structural and Interfacial Synergistic Effects of 3D Graphene@Ni Scaffold. <i>ACS Applied Materials & Description (Note of Scale)</i> 126097	9.5	121
424	Valence Engineering via Selective Atomic Substitution on Tetrahedral Sites in Spinel Oxide for Highly Enhanced Oxygen Evolution Catalysis. <i>Journal of the American Chemical Society</i> , 2019 , 141, 8136-	8145	120
423	Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization. <i>Biomaterials</i> , 2014 , 35, 2934-41	15.6	113

422	Remarkable NIR Enhancement of Multifunctional Nanoprobes for In Vivo Trimodal Bioimaging and Upconversion Optical/T2-Weighted MRI-Guided Small Tumor Diagnosis. <i>Advanced Functional Materials</i> , 2015 , 25, 7119-7129	15.6	106
421	Graphene/sulfur hybrid nanosheets from a space-confined "sauna" reaction for high-performance lithium-sulfur batteries. <i>Advanced Materials</i> , 2015 , 27, 5936-42	24	106
420	Crystal Structure and Luminescence Properties of Ca8Mg3Al2Si7O28:Eu2+ for WLEDs. <i>Advanced Optical Materials</i> , 2014 , 2, 183-188	8.1	106
419	When Nanowires Meet Ultrahigh Ferroelectric Field-High-Performance Full-Depleted Nanowire Photodetectors. <i>Nano Letters</i> , 2016 , 16, 2548-55	11.5	103
418	High-Sensitivity Floating-Gate Phototransistors Based on WS2 and MoS2. <i>Advanced Functional Materials</i> , 2016 , 26, 6084-6090	15.6	103
417	Tailoring Anisotropic Li-Ion Transport Tunnels on Orthogonally Arranged Li-Rich Layered Oxide Nanoplates Toward High-Performance Li-Ion Batteries. <i>Nano Letters</i> , 2017 , 17, 1670-1677	11.5	99
416	Melting behavior in ultrathin metallic nanowires. <i>Physical Review B</i> , 2002 , 66,	3.3	95
415	Na3V2(PO4)2F3@C dispersed within carbon nanotube frameworks as a high tap density cathode for high-performance sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 6007-6014	13	94
414	Recent advances in thermoplastic elastomers from living polymerizations: Macromolecular architectures and supramolecular chemistry. <i>Progress in Polymer Science</i> , 2019 , 95, 1-31	29.6	91
413	Visible Light-Assisted High-Performance Mid-Infrared Photodetectors Based on Single InAs Nanowire. <i>Nano Letters</i> , 2016 , 16, 6416-6424	11.5	90
412	Interfacial Properties of Polymer Nanocomposites: Role of Chain Rigidity and Dynamic Heterogeneity Length Scale. <i>Macromolecules</i> , 2017 , 50, 2397-2406	5.5	87
411	pH-responsive poly (acrylic acid)-gated mesoporous silica and its application in oral colon targeted drug delivery for doxorubicin. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 154, 287-296	6	87
410	High-Performance Ferroelectric Polymer Side-Gated CdS Nanowire Ultraviolet Photodetectors. <i>Advanced Functional Materials</i> , 2016 , 26, 7690-7696	15.6	87
409	Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal. Journal of Alloys and Compounds, 2017 , 728, 1037-1042	5.7	87
408	Unipolar barrier photodetectors based on van der Waals heterostructures. <i>Nature Electronics</i> , 2021 , 4, 357-363	28.4	87
407	Phonon-Assisted Population Inversion in Lanthanide-Doped Upconversion Ba LaF Nanocrystals in Glass-Ceramics. <i>Advanced Materials</i> , 2016 , 28, 8045-8050	24	86
406	Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications. <i>Nanoscale</i> , 2016 , 8, 15196-204	7.7	85
405	Anisotropic Broadband Photoresponse of Layered Type-II Weyl Semimetal MoTe. <i>Advanced Materials</i> , 2018 , 30, e1707152	24	80

(2013-2018)

404	Rational Design of Multifunctional Fe@IFFe O @H-11O Nanocomposites with Enhanced Magnetic and Photoconversion Effects for Wide Applications: From Photocatalysis to Imaging-Guided Photothermal Cancer Therapy. <i>Advanced Materials</i> , 2018 , 30, e1706747	24	79
403	Towards high areal capacitance, rate capability, and tailorable supercapacitors: Co3O4@polypyrrole coreEhell nanorod bundle array electrodes. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 19058-19065	13	79
402	Engineering hetero-epitaxial nanostructures with aligned Li-ion channels in Li-rich layered oxides for high-performance cathode application. <i>Nano Energy</i> , 2017 , 35, 271-280	17.1	78
401	Terahertz Photon Detection: Sensitive Terahertz Detection and Imaging Driven by the Photothermoelectric Effect in Ultrashort-Channel Black Phosphorus Devices (Adv. Sci. 5/2020). <i>Advanced Science</i> , 2020 , 7, 2070029	13.6	78
400	Tungsten diselenide for all-fiber lasers with the chemical vapor deposition method. <i>Nanoscale</i> , 2018 , 10, 7971-7977	7.7	78
399	Tunable active edge sites in PtSe2 films towards hydrogen evolution reaction. <i>Nano Energy</i> , 2017 , 42, 26-33	17.1	77
398	AsP/InSe Van der Waals Tunneling Heterojunctions with Ultrahigh Reverse Rectification Ratio and High Photosensitivity. <i>Advanced Functional Materials</i> , 2019 , 29, 1900314	15.6	76
397	Design of a luminescence pattern via altering the crystal structure and doping ions to create warm white LEDs. <i>Chemical Communications</i> , 2014 , 50, 2635-7	5.8	76
396	Simultaneous synthesis and amine-functionalization of single-phase BaYF5:Yb/Er nanoprobe for dual-modal in vivo upconversion fluorescence and long-lasting X-ray computed tomography imaging. <i>Nanoscale</i> , 2013 , 5, 6023-9	7.7	74
395	Synergistic dual-modality in vivo upconversion luminescence/X-ray imaging and tracking of amine-functionalized NaYbF(4):Er nanoprobes. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 3839-46	9.5	70
394	Iron supported C@Fe3O4 nanotube array: a new type of 3D anode with low-cost for high performance lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 5560		70
393	Tetra-heteroatom self-doped carbon nanosheets derived from silkworm excrement for high-performance supercapacitors. <i>Journal of Power Sources</i> , 2018 , 379, 74-83	8.9	69
392	Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor. <i>Advanced Functional Materials</i> , 2017 , 27, 16044	1 ¹ 4 ^{5.6}	68
391	High-polarization-discriminating infrared detection using a single quantum well sandwiched in plasmonic micro-cavity. <i>Scientific Reports</i> , 2014 , 4, 6332	4.9	65
390	Broadband Anisotropic Photoresponse of the "Hydrogen Atom" Version Type-II Weyl Semimetal Candidate TalrTe. <i>ACS Nano</i> , 2018 , 12, 4055-4061	16.7	64
389	Commercial Dacron cloth supported Cu(OH)2 nanobelt arrays for wearable supercapacitors. Journal of Materials Chemistry A, 2016 , 4, 14781-14788	13	62
388	Aqueous manganese dioxide ink for paper-based capacitive energy storage devices. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 6800-3	16.4	61
387	High Temperature Crystallization of Free-Standing Anatase TiO2 Nanotube Membranes for High Efficiency Dye-Sensitized Solar Cells. <i>Advanced Functional Materials</i> , 2013 , 23, 5952-5960	15.6	60

386	Highly sensitive gas sensor by the LaAlO3 /SrTiO3 heterostructure with Pd nanoparticle surface modulation. <i>Advanced Materials</i> , 2014 , 26, 5962-8	24	58
385	Multiple channeled phenomena in heterostructures with defects mode. <i>Applied Physics Letters</i> , 2004 , 84, 1629-1631	3.4	58
384	Imaging of nonlocal hot-electron energy dissipation via shot noise. <i>Science</i> , 2018 , 360, 775-778	33.3	56
383	Real-Time Observation of the Electrode-Size-Dependent Evolution Dynamics of the Conducting Filaments in a SiO Layer. <i>ACS Nano</i> , 2017 , 11, 4097-4104	16.7	55
382	Broadband Yellowish-Green Emitting Ba4Gd3Na3(PO4)6F2:Eu(2+) Phosphor: Structure Refinement, Energy Transfer, and Thermal Stability. <i>Inorganic Chemistry</i> , 2016 , 55, 6107-13	5.1	55
381	PtTe -Based Type-II Dirac Semimetal and Its van der Waals Heterostructure for Sensitive Room Temperature Terahertz Photodetection. <i>Small</i> , 2019 , 15, e1903362	11	55
380	Tunable and high-sensitivity sensing based on Fano resonance with coupled plasmonic cavities. <i>Scientific Reports</i> , 2017 , 7, 10639	4.9	53
379	Generation of orange and green emissions in Ca2GdZr2(AlO4)3:Ce3+, Mn2+, Tb3+ garnets via energy transfer with Mn2+ and Tb3+ as acceptors. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 2334-2340	7.1	53
378	Self-rolling and light-trapping in flexible quantum well-embedded nanomembranes for wide-angle infrared photodetectors. <i>Science Advances</i> , 2016 , 2, e1600027	14.3	52
377	Droop improvement in blue InGaN/GaN multiple quantum well light-emitting diodes with indium graded last barrier. <i>Applied Physics Letters</i> , 2011 , 99, 233501	3.4	52
376	Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/EGa2O3 2D/3D Schottky junction with ultrafast speed. <i>Nano Research</i> , 2021 , 14, 1973-1979	10	52
375	PEGylated NaLuF4: Yb/Er upconversion nanophosphors for in vivo synergistic fluorescence/X-ray bioimaging and long-lasting, real-time tracking. <i>Biomaterials</i> , 2014 , 35, 9689-97	15.6	51
374	Structure and magnetic properties of Co-Cu bimetallic clusters. <i>Physical Review B</i> , 2002 , 66,	3.3	51
373	Visible to near-infrared photodetectors based on MoS2 vertical Schottky junctions. <i>Nanotechnology</i> , 2017 ,	3.4	51
372	Sponge-like Ni(OH)2-NiF2 composite film with excellent electrochemical performance. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 1601-5	3.6	50
371	Ultrasensitive Room-Temperature Terahertz Direct Detection Based on a Bismuth Selenide Topological Insulator. <i>Advanced Functional Materials</i> , 2018 , 28, 1801786	15.6	48
370	Enabling effective polysulfide trapping and high sulfur loading via a pyrrole modified graphene foam host for advanced lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 7309-7315	13	47
369	Fermi surface and band renormalization of Sr1NKxFe2As2 from angle-resolved photoemission spectroscopy. <i>Physical Review B</i> , 2008 , 78,	3.3	46

(2018-2019)

368	Epitaxial Synthesis of Monolayer PtSe Single Crystal on MoSe with Strong Interlayer Coupling. <i>ACS Nano</i> , 2019 , 13, 10929-10938	16.7	45
367	Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors. <i>Scientific Reports</i> , 2014 , 4, 5470	4.9	45
366	A facile route to fabricate an anodic TiO2 nanotube-nanoparticle hybrid structure for high efficiency dye-sensitized solar cells. <i>Nanoscale</i> , 2012 , 4, 5148-53	7.7	45
365	Study of gain and photoresponse characteristics for back-illuminated separate absorption and multiplication GaN avalanche photodiodes. <i>Journal of Applied Physics</i> , 2014 , 115, 013103	2.5	44
364	Large-area highly crystalline WSe atomic layers for ultrafast pulsed lasers. <i>Optics Express</i> , 2017 , 25, 300	29.300) 3 4]4
363	Monotonic d-wave superconducting gap of the optimally doped Bi2Sr1.6La0.4CuO6 superconductor by laser-based angle-resolved photoemission spectroscopy. <i>Physical Review B</i> , 2009 , 79,	3.3	44
362	Tunable white light of a Ce,Tb,Mn triply doped NaCaSiO phosphor for high colour-rendering white LED applications: tunable luminescence and energy transfer. <i>Dalton Transactions</i> , 2017 , 46, 9272-9279	4.3	43
361	Enhanced upconversion luminescence and single-band red emission of NaErF4 nanocrystals via Mn2+ doping. <i>Journal of Alloys and Compounds</i> , 2015 , 618, 776-780	5.7	43
360	Boosting the oxygen evolution reaction in non-precious catalysts by structural and electronic engineering. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 10253-10263	13	43
359	Dependence of Ion-Implant-Induced LBIC Novel Characteristic on Excitation Intensity for Long-Wavelength HgCdTe-Based Photovoltaic Infrared Detector Pixel Arrays. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2013 , 19, 1-7	3.8	43
358	Facile synthesis of a mechanically robust and highly porous NiO film with excellent electrocatalytic activity towards methanol oxidation. <i>Nanoscale</i> , 2016 , 8, 11256-63	7.7	43
357	Hydrothermal growth and optical properties of Nb2O5 nanorod arrays. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 8185-8190	7.1	42
356	Multi-functional NaErF4:Yb nanorods: enhanced red upconversion emission, in vitro cell, in vivo X-ray, and T2-weighted magnetic resonance imaging. <i>Nanoscale</i> , 2014 , 6, 2855-60	7.7	42
355	Site Occupation and Luminescence of Novel Orange-Red Ca3M2Ge3O12:Mn2+,Mn4+ (M = Al, Ga) Phosphors. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 3357-3366	8.3	41
354	Dark Current Transport and Avalanche Mechanism in HgCdTe Electron-Avalanche Photodiodes. <i>IEEE Transactions on Electron Devices</i> , 2015 , 62, 1926-1931	2.9	39
353	Anisotropic ultrasensitive PdTe-based phototransistor for room-temperature long-wavelength detection. <i>Science Advances</i> , 2020 , 6,	14.3	39
352	Ultrafine Cobalt Sulfide Nanoparticles Encapsulated Hierarchical N-doped Carbon Nanotubes for High-performance Lithium Storage. <i>Electrochimica Acta</i> , 2017 , 225, 137-142	6.7	38
351	Exploring Anomalous Polarization Dynamics in Organometallic Halide Perovskites. <i>Advanced Materials</i> , 2018 , 30, 1705298	24	38

350	Broadband circular polarizers constructed using helix-like chiral metamaterials. <i>Nanoscale</i> , 2016 , 8, 1472	2 59	38
349	Accurate Simulation of Temperature-Dependent Dark Current in HgCdTe Infrared Detectors Assisted by Analytical Modeling. <i>Journal of Electronic Materials</i> , 2010 , 39, 981-985	1.9	38
348	Twin Engineering in Solution-Synthesized Nonstoichiometric Cu5FeS4 Icosahedral Nanoparticles for Enhanced Thermoelectric Performance. <i>Advanced Functional Materials</i> , 2018 , 28, 1705117	15.6	37
347	Hybrid WSe-InO Phototransistor with Ultrahigh Detectivity by Efficient Suppression of Dark Currents. <i>ACS Applied Materials & </i>	9.5	37
346	Hybrid luminescence materials assembled by [Ln(DPA)3](3-) and mesoporous host through ion-pairing interactions with high quantum efficiencies and long lifetimes. <i>Scientific Reports</i> , 2015 , 5, 8385	4.9	37
345	Efficiency enhancement of blue InGaN/GaN light-emitting diodes with an AlGaN-GaN-AlGaN electron blocking layer. <i>Journal of Applied Physics</i> , 2012 , 111, 094503	2.5	37
344	Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities. <i>Nanoscale</i> , 2016 , 8, 8189-94	7.7	37
343	Controllable synthesis of Ln3+ (Ln = Tb, Eu) doped zinc phosphate nano-/micro-structured materials: phase, morphology and luminescence properties. <i>Nanoscale</i> , 2014 , 6, 2137-45	7.7	36
342	Structure and photoluminescence properties of novel Ca2NaSiO4F:Re (Re = Eu2+, Ce3+, Tb3+) phosphors with energy transfer for white emitting LEDs. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 4304	-4 3 11	36
341	Bipolar Carrier Transfer Channels in Epitaxial Graphene/SiC Core-Shell Heterojunction for Efficient Photocatalytic Hydrogen Evolution. <i>Advanced Materials</i> , 2015 , 27, 7986-91	24	36
340	Formation of stable fullerenelike GanAsn clusters (669): Gradient-corrected density-functional theory and a genetic global optimization approach. <i>Physical Review B</i> , 2006 , 74,	3.3	36
339	Substrate orientation-induced epitaxial growth of face centered cubic Mo2C superconductive thin film. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 10822-10827	7.1	35
338	Optical thermometry based on up-conversion emission behavior of Ba2LaF7 nano-crystals embedded in glass matrix. <i>Journal of Luminescence</i> , 2018 , 194, 433-439	3.8	35
337	Multi-color luminescence of uniform CdWO4 nanorods through Eu3+ ion doping. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 2865-2871	7.1	35
336	Ultrafast relaxation dynamics of photoexcited Dirac fermions in the three-dimensional Dirac semimetal Cd3As2. <i>Physical Review B</i> , 2017 , 95,	3.3	34
335	MoS2 nanosheet photodetectors with ultrafast response. <i>Applied Physics Letters</i> , 2017 , 111, 153502	3.4	34
334	Wavelength-Tunable Mid-Infrared Lasing from Black Phosphorus Nanosheets. <i>Advanced Materials</i> , 2020 , 32, e1808319	24	34
333	Pixel-level plasmonic microcavity infrared photodetector. <i>Scientific Reports</i> , 2016 , 6, 25849	4.9	34

332	Room-Temperature Single-Photon Detector Based on Single Nanowire. <i>Nano Letters</i> , 2018 , 18, 5439-544	45 1.5	34
331	Urchin-like Ce/Tb co-doped GdPO hollow spheres for in vivo luminescence/X-ray bioimaging and drug delivery. <i>Biomaterials Science</i> , 2014 , 2, 1404-1411	7.4	34
330	Backside-illuminated infrared photoluminescence and photoreflectance: Probe of vertical nonuniformity of HgCdTe on GaAs. <i>Applied Physics Letters</i> , 2010 , 96, 121915	3.4	34
329	A novel nanostructure and multiferroic properties in Pb(Zr0.52Ti0.48)O3/CoFe2O4nanocomposite films grown by pulsed-laser deposition. <i>Journal Physics D: Applied Physics</i> , 2008 , 41, 235405	3	34
328	Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. <i>Science Advances</i> , 2021 , 7,	14.3	34
327	Artificial Structural Colors and Applications. <i>Innovation(China)</i> , 2021 , 2, 100081	17.8	34
326	Strategy to Enhance the Luminescence of Lanthanide lons Doped MgWO Nanosheets through Incorporation of Carbon Dots. <i>Inorganic Chemistry</i> , 2018 , 57, 8662-8672	5.1	34
325	High-Speed Visible Light Communications: Enabling Technologies and State of the Art. <i>Applied Sciences (Switzerland)</i> , 2018 , 8, 589	2.6	33
324	YF3:Eu3+ Micro-Single Crystals: Fine Morphological Tuning and Luminescence Properties. <i>Crystal Growth and Design</i> , 2013 , 13, 3582-3587	3.5	33
323	High performance colored selective absorbers for architecturally integrated solar applications. Journal of Materials Chemistry A, 2015 , 3, 7353-7360	13	33
322	Structure and quality controlled growth of InAs nanowires through catalyst engineering. <i>Nano Research</i> , 2014 , 7, 1640-1649	10	33
321	Organic-free Anatase TiOlPaste for Efficient Plastic Dye-Sensitized Solar Cells and Low Temperature Processed Perovskite Solar Cells. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 19431-8	9.5	32
320	High quality polyacrylic acid modified multifunction luminescent nanorods for tri-modality bioimaging, in vivo long-lasting tracking and biodistribution. <i>Nanoscale</i> , 2015 , 7, 542-50	7.7	32
319	Enhancing Luminescence and Controlling the Mn Valence State of GdGaAlO:Mn Phosphors by the Design of the Garnet Structure. <i>ACS Applied Materials & Design of the Garnet Structure</i> . <i>ACS Applied Materials & Design of the Garnet Structure</i> .	9.5	32
318	Highly entangled carbon nanoflakes on Li3V2(PO4)3 microrods for improved lithium storage performance. <i>RSC Advances</i> , 2013 , 3, 1297-1301	3.7	32
317	Self-Assembly Growth of In-Rich InGaAs Core-Shell Structured Nanowires with Remarkable Near-Infrared Photoresponsivity. <i>Nano Letters</i> , 2017 , 17, 7824-7830	11.5	32
316	Mid-infrared polarization-controlled broadband achromatic metadevice. Science Advances, 2020, 6,	14.3	32
315	Energy transfer and color tunable emission in Tb,Eu co-doped SrLaNa(PO)F phosphors. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 190, 246-252	4.4	31

314	Efficient sensitization of Mn2+ emission by Eu2+ in Ca12Al14O33Cl2 host under UV excitation. <i>RSC Advances</i> , 2013 , 3, 16034	3.7	31
313	Mechanisms of infrared photoluminescence in HgTe/HgCdTe superlattice. <i>Journal of Applied Physics</i> , 2012 , 112, 063512	2.5	31
312	Quality of epitaxial InAs nanowires controlled by catalyst size in molecular beam epitaxy. <i>Applied Physics Letters</i> , 2013 , 103, 073109	3.4	30
311	In situ observation of the thermal stability of black phosphorus. 2D Materials, 2017, 4, 025001	5.9	29
310	Enhancing photoluminescence performance of SrSi2O2N2:Eu(2+) phosphors by Re (Re = La, Gd, Y, Dy, Lu, Sc) substitution and its thermal quenching behavior investigation. <i>Inorganic Chemistry</i> , 2015 , 54, 9060-5	5.1	29
309	Controllable in situ synthesis of epsilon manganese dioxide hollow structure/RGO nanocomposites for high-performance supercapacitors. <i>Nanoscale</i> , 2016 , 8, 1854-60	7.7	29
308	Recent Progresses and Development of Advanced Atomic Layer Deposition towards High-Performance Li-lon Batteries. <i>Nanomaterials</i> , 2017 , 7,	5.4	29
307	Self-doped rutile titania with high performance for direct and ultrafast assay of H2O2. <i>ACS Applied Materials & District Action Materials & D</i>	9.5	29
306	Fabrication of a novel TiO2/S composite cathode for high performance lithiumBulfur batteries. <i>RSC Advances</i> , 2015 , 5, 77348-77353	3.7	28
305	Influencing Sources for Dark Current Transport and Avalanche Mechanisms in Planar and Mesa HgCdTe p-i-n Electron-Avalanche Photodiodes. <i>IEEE Transactions on Electron Devices</i> , 2018 , 65, 572-576	2.9	28
304	An intense NIR emission from Ca14Al10Zn6O35:Mn(4+),Yb(3+)via energy transfer for solar spectral converters. <i>Dalton Transactions</i> , 2016 , 45, 466-8	4.3	28
303	Novel Two-Step Topotactic Transformation Synthetic Route Towards Monodisperse LnOF:Re,3+ (Ln = Y, Pr[lu) Nanocrystals with Down/Upconversion Luminescence Properties. <i>Advanced Optical Materials</i> , 2015 , 3, 583-592	8.1	28
302	The oxidation behavior of Tild.5AlBNb at 900 LC. Intermetallics, 2007, 15, 989-998	3.5	28
301	Ultrasensitive Mid-wavelength Infrared Photodetection Based on a Single InAs Nanowire. <i>ACS Nano</i> , 2019 , 13, 3492-3499	16.7	28
300	Importance of suppression of Yb(3+) de-excitation to upconversion enhancement in ENaYF4: Yb(3+)/Er(3+)@ENaYF4 sandwiched structure nanocrystals. <i>Inorganic Chemistry</i> , 2015 , 54, 3921-8	5.1	27
299	Optical temperature sensing properties of KLu2F7: Yb3+/Er3+/Nd3+ nanoparticles under NIR excitation. <i>Journal of Alloys and Compounds</i> , 2018 , 742, 497-503	5.7	27
298	Ni@NiO core/shell dendrites for ultra-long cycle life electrochemical energy storage. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15049-15056	13	27
297	Shallow-terrace-like interface in dilute-bismuth GaSb/AlGaSb single quantum wells evidenced by photoluminescence. <i>Journal of Applied Physics</i> , 2013 , 113, 153505	2.5	27

296	Poly(1-adamantyl acrylate): Living Anionic Polymerization, Block Copolymerization, and Thermal Properties. <i>Macromolecules</i> , 2016 , 49, 9406-9414	5.5	27	
295	Phase-Tunable Synthesis of Monodisperse YPO:Ln (Ln = Ce, Eu, Tb) Micro/Nanocrystals via Topotactic Transformation Route with Multicolor Luminescence Properties. <i>Inorganic Chemistry</i> , 2017 , 56, 6114-6121	5.1	26	
294	SWCNT-MoS -SWCNT Vertical Point Heterostructures. Advanced Materials, 2017, 29, 1604469	24	26	
293	Emission Enhancement and Color Tuning for GdVO:Ln (Ln = Dy, Eu) by Surface Modification at Single Wavelength Excitation. <i>Inorganic Chemistry</i> , 2017 , 56, 282-291	5.1	26	
292	Topotactic Transformation Route to Monodisperse ENaYF4:Ln(3+) Microcrystals with Luminescence Properties. <i>Inorganic Chemistry</i> , 2016 , 55, 1912-9	5.1	26	
291	Orientation Dependence of Electromechanical Characteristics of Defect-free InAs Nanowires. <i>Nano Letters</i> , 2016 , 16, 1787-93	11.5	26	
290	Morphology-controlled synthesis of self-assembled LiFePO4/C/RGO for high-performance Li-ion batteries. <i>ACS Applied Materials & Discourse amp; Interfaces</i> , 2014 , 6, 17556-63	9.5	26	
289	19 th quantum cascade infrared photodetectors. <i>Applied Physics Letters</i> , 2013 , 102, 191120	3.4	26	
288	An orange-emitting phosphor via the efficient Ce3+Mn2+ and Eu2+Mn2+ energy transfers in La9.33(SiO4)6O2 for UV or near-UV LEDs. <i>New Journal of Chemistry</i> , 2013 , 37, 3701	3.6	26	
287	Optimal number of quantum wells for blue InGaN/GaN light-emitting diodes. <i>Applied Physics Letters</i> , 2012 , 100, 263504	3.4	26	
286	Monodisperse YVO4:Eu3+ submicrocrystals: controlled synthesis and luminescence properties. CrystEngComm, 2013, 15, 5776	3.3	26	
285	(S)TEM study of different stages of Ti월5AlBNb0.2W0.2B0.02Y alloy oxidation at 900 °C. <i>Corrosion Science</i> , 2008 , 50, 978-988	6.8	26	
284	Enlargement of the nontransmission frequency range of multiple-channeled filters by the use of heterostructures. <i>Journal of Applied Physics</i> , 2004 , 95, 424-426	2.5	26	
283	Structural and electronic properties of Sbn (n=2🛮0) clusters using density-functional theory. <i>Physical Review A</i> , 2005 , 72,	2.6	26	
282	2D materials for conducting holes from grain boundaries in perovskite solar cells. <i>Light: Science and Applications</i> , 2021 , 10, 68	16.7	26	
281	Ultrafast Thulium-Doped Fiber Laser Mode Locked by Monolayer WSe2. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2018 , 24, 1-6	3.8	26	
280	Phase and Facet Control of Molybdenum Carbide Nanosheet Observed by In Situ TEM. <i>Small</i> , 2017 , 13, 1700051	11	25	
279	Metal/Ion Interactions Induced p-i-n Junction in Methylammonium Lead Triiodide Perovskite Single Crystals. <i>Journal of the American Chemical Society</i> , 2017 , 139, 17285-17288	16.4	25	

278	A new crystal: layer-structured rhombohedral In3Se4. CrystEngComm, 2014, 16, 393-398	3.3	25
277	Construction of pH-responsive and up-conversion luminescent NaYFIYbI+/ErI+@SiOIPMAA nanocomposite for colon targeted drug delivery. <i>Scientific Reports</i> , 2016 , 6, 21335	4.9	25
276	Terahertz probe of photoexcited carrier dynamics in the Dirac semimetal Cd3As2. <i>Physical Review B</i> , 2018 , 98,	3.3	25
275	Performance Optimization of InSb Infrared Focal-Plane Arrays with Diffractive Microlenses. <i>Journal of Electronic Materials</i> , 2014 , 43, 2795-2801	1.9	24
274	Significant enhancement in photocatalytic activity of high quality SiC/graphene corellhell heterojunction with optimal structural parameters. <i>RSC Advances</i> , 2014 , 4, 46771-46779	3.7	24
273	High-temperature long persistent and photo-stimulated luminescence in Tb3+ doped gallate phosphor. <i>Journal of Alloys and Compounds</i> , 2017 , 701, 774-779	5.7	23
272	Large-area and highly crystalline MoSe for optical modulator. <i>Nanotechnology</i> , 2017 , 28, 484001	3.4	23
271	Tunable multicolor and white luminescence in Tb3+/Dy3+/Mn2+ doped CePO4 via energy transfer. <i>Journal of Alloys and Compounds</i> , 2015 , 637, 489-496	5.7	23
270	Facile preparation of hierarchical TiO2 nanowireflanoparticle/nanotube architecture for highly efficient dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20366-20374	13	23
269	All acrylic-based thermoplastic elastomers with high upper service temperature and superior mechanical properties. <i>Polymer Chemistry</i> , 2017 , 8, 5741-5748	4.9	23
268	Hybrid lanthanide nanoparticles as a new class of binary contrast agents for in vivo T/T dual-weighted MRI and synergistic tumor diagnosis. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 2715-272	2 ^{7.3}	22
267	Direct observation of carbon nanostructure growth at liquid-solid interfaces. <i>Chemical Communications</i> , 2014 , 50, 826-8	5.8	22
266	Sub-10 nm BaLaF:Mn/Yb/Er nanoprobes for dual-modal synergistic in vivo upconversion luminescence and X-ray bioimaging. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 6527-6533	7.3	22
265	Au impact on GaAs epitaxial growth on GaAs (111)B substrates in molecular beam epitaxy. <i>Applied Physics Letters</i> , 2013 , 102, 063106	3.4	22
264	Room temperature magnetic exchange coupling in multiferroic BaTiO3/CoFe2O4 magnetoelectric superlattice. <i>Journal of Materials Science</i> , 2009 , 44, 5143-5148	4.3	22
263	Deformation-induced ₹-1phase transformation in TiAl alloys. <i>Materials Characterization</i> , 2010 , 61, 1029	-15034	22
262	Orientation relationship between TiB precipitate and IPTiAl phase. Scripta Materialia, 2007, 56, 441-444	5.6	22
261	TEM investigation of the oxide scale of Tilde.5AlBNb at 900 LC for 50 h. Intermetallics, 2007, 15, 824-831	3.5	22

260	Broadband Achromatic Metalens in Mid-Wavelength Infrared. <i>Laser and Photonics Reviews</i> , 2021 , 15, 2100020	8.3	22
259	Facile Preparation of Double Rare Earth-Doped Carbon Dots for MRI/CT/FI Multimodal Imaging. ACS Applied Nano Materials, 2018 , 1, 2544-2551	5.6	22
258	Synthesis, luminescence and application of novel europium, cerium and terbium-doped apatite phosphors. <i>CrystEngComm</i> , 2019 , 21, 6226-6237	3.3	21
257	Atomic-Scale Mechanism on Nucleation and Growth of MoC Nanoparticles Revealed by in Situ Transmission Electron Microscopy. <i>Nano Letters</i> , 2016 , 16, 7875-7881	11.5	21
256	Ba2GdF7 Nanocrystals: Solution-Based Synthesis, Growth Mechanism, and Luminescence Properties. <i>Crystal Growth and Design</i> , 2014 , 14, 1819-1826	3.5	21
255	Coherent fluorescence emission by using hybrid photonic-plasmonic crystals. <i>Laser and Photonics Reviews</i> , 2014 , 8, 717-725	8.3	21
254	The elastic properties of hexagonal osmium under pressure: The first-principles investigations. <i>Physica B: Condensed Matter</i> , 2009 , 404, 1218-1221	2.8	21
253	Cracks bring robustness: a pre-cracked NiO nanosponge electrode with greatly enhanced cycle stability and rate performance. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 8211-8218	13	21
252	Large-area, lithography-free, narrow-band and highly directional thermal emitter. <i>Nanoscale</i> , 2019 , 11, 19742-19750	7.7	21
251	Plasmon-engineered anti-replacement synthesis of naked Cu nanoclusters with ultrahigh electrocatalytic activity. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 18687-18693	13	21
250	High dielectric tunability, electrostriction strain and electrocaloric strength at a tricritical point of tetragonal, rhombohedral and pseudocubic phases. <i>Journal of Alloys and Compounds</i> , 2015 , 646, 597-60	2 5·7	20
249	Effect of pH on the microstructure of EGaO and its enhanced photocatalytic activity for antibiotic degradation. <i>Journal of Colloid and Interface Science</i> , 2018 , 519, 255-262	9.3	20
248	Structural, electronic, and optical properties of hydrogenated few-layer silicene: Size and stacking effects. <i>Journal of Applied Physics</i> , 2013 , 114, 094308	2.5	20
247	Structure dependent quantum confinement effect in hydrogen-terminated nanodiamond clusters. Journal of Applied Physics, 2010 , 108, 094303	2.5	20
246	First-principles investigations on elastic properties of ⊞and □Ta4AlC3. <i>Solid State Communications</i> , 2009 , 149, 441-444	1.6	20
245	Controllable Doping in 2D Layered Materials. <i>Advanced Materials</i> , 2021 , 33, e2104942	24	20
244	Quality Control of GaAs Nanowire Structures by Limiting As Flux in Molecular Beam Epitaxy. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 20721-20727	3.8	19
243	Novel synthesis and luminescence properties of t-LaVO4:Eu3+ micro cube. <i>CrystEngComm</i> , 2014 , 16, 152-158	3.3	19

242	Stable 4 V-class bicontinuous cathodes by hierarchically porous carbon coating on Li3V2(PO4)3 nanospheres. <i>Nanoscale</i> , 2014 , 6, 12426-33	7.7	19
241	Theoretical prediction on the structural, electronic, and polarization properties of tetragonal Bi2ZnTiO6. <i>Journal of Applied Physics</i> , 2009 , 105, 053713	2.5	19
240	Ordered hierarchical porous platinum membranes with tailored mesostructures. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 10101-5	16.4	19
239	The microscopic origin of magnon-photon level attraction by traveling waves: Theory and experiment. <i>Physical Review B</i> , 2019 , 100,	3.3	19
238	Crystal-phase control of GaAstaAsSb corethell/axial nanowire heterostructures by a two-step growth method. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 6726-6732	7.1	19
237	A new low-temperature solution route to Aurivillius-type layered oxyfluoride perovskites Bi2MO5F (M = Nb, Ta) as photocatalysts. <i>Applied Catalysis B: Environmental</i> , 2017 , 205, 112-120	21.8	18
236	Realization of ultra-long columnar single crystals in TiO2 nanotube arrays as fast electron transport channels for high efficiency dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 11520-1	1 ¹ 5 ² 29	18
235	Color tuning and energy transfer in Eu2+/Mn2+-doped Ba3Y(PO4)3 eulytite-type orthophosphate phosphors. <i>RSC Advances</i> , 2015 , 5, 46517-46524	3.7	18
234	Morphological control of SnTe nanostructures by tuning catalyst composition. <i>Nano Research</i> , 2015 , 8, 3011-3019	10	18
233	Controlled synthesis, asymmetrical transport behavior and luminescence properties of lanthanide doped ZnO mushroom-like 3D hierarchical structures. <i>Nanoscale</i> , 2014 , 6, 13795-802	7.7	18
232	Realization of photoreflectance spectroscopy in very-long wave infrared of up to 20 lb. <i>Applied Physics Letters</i> , 2009 , 95, 041908	3.4	18
231	Evolution of valence-band alignment with nitrogen content in GaNAstaAs single quantum wells. <i>Applied Physics Letters</i> , 2008 , 93, 031904	3.4	18
230	Photoluminescence, energy transfer and tunable color of Ce(3+), Tb(3+) and Eu(2+) activated oxynitride phosphors with high brightness. <i>Dalton Transactions</i> , 2016 , 45, 9676-83	4.3	18
229	Observable Two-Step Nucleation Mechanism in Solid-State Formation of Tungsten Carbide. <i>ACS Nano</i> , 2019 , 13, 681-688	16.7	18
228	In Situ TEM Observation of Crystal Structure Transformation in InAs Nanowires on Atomic Scale. <i>Nano Letters</i> , 2018 , 18, 6597-6603	11.5	18
227	Prediction of half-semiconductor antiferromagnets with vanishing net magnetization. <i>RSC Advances</i> , 2015 , 5, 46640-46647	3.7	17
226	Design and Synthesis of Multigraft Copolymer Thermoplastic Elastomers: Superelastomers. <i>Macromolecular Chemistry and Physics</i> , 2018 , 219, 1700254	2.6	17
225	Color tuning and energy transfer investigation in Na2Ca4Mg2Si4O15:Eu2+, Mn2+ phosphor and its potential application for UV-excited UV-WLEDs. <i>RSC Advances</i> , 2014 , 4, 7588	3.7	17

224	High extinction ratio super pixel for long wavelength infrared polarization imaging detection based on plasmonic microcavity quantum well infrared photodetectors. <i>Scientific Reports</i> , 2018 , 8, 15070	4.9	17	
223	Towards sensitive terahertz detection via thermoelectric manipulation using graphene transistors. <i>NPG Asia Materials</i> , 2018 , 10, 318-327	10.3	16	
222	Significant Enhancement of Single-Walled Carbon Nanotube Based Infrared Photodetector Using PbS Quantum Dots. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2018 , 24, 1-8	3.8	16	
221	One-pot synthesis of PEG modified BaLuFtGd/Yb/Er nanoprobes for dual-modal in vivo upconversion luminescence and X-ray bioimaging. <i>Dalton Transactions</i> , 2014 , 43, 13343-8	4.3	16	
220	Electronic, magnetic and dielectric properties of multiferroic MnTiO3. <i>Journal of Materials Research</i> , 2012 , 27, 1421-1429	2.5	16	
219	Tuning the detection wavelength of quantum-well infrared photodetectors by single high-energy implantation. <i>Applied Physics Letters</i> , 2001 , 78, 10-12	3.4	16	
218	Reflective metalens with sub-diffraction-limited and multifunctional focusing. <i>Scientific Reports</i> , 2017 , 7, 12632	4.9	15	
217	Large-Area Low-Cost Dielectric Perfect Absorber by One-Step Sputtering. <i>Advanced Optical Materials</i> , 2019 , 7, 1801596	8.1	15	
216	Quantum dot single-photon switches of resonant tunneling current for discriminating-photon-number detection. <i>Scientific Reports</i> , 2015 , 5, 9389	4.9	15	
215	Controlled synthesis of 3D flower-like MgWO4:Eu3+ hierarchical structures and fluorescence enhancement through introduction of carbon dots. <i>CrystEngComm</i> , 2018 , 20, 608-614	3.3	15	
214	In situ TEM study of the sodiation/desodiation mechanism of MnO2 nanowire with gel-electrolytes. <i>Energy Storage Materials</i> , 2018 , 15, 91-97	19.4	15	
213	Color tunable emission and energy transfer in Eu2+, Tb3+, or Mn2+-activated cordierite for near-UV white LEDs. <i>New Journal of Chemistry</i> , 2014 , 38, 2884	3.6	15	
212	Relaxations and bonding mechanism in Hg1\(\mathbb{R}\)CdxTe with mercury vacancy defect: First-principles study. <i>Physical Review B</i> , 2006 , 73,	3.3	15	
211	Carrier dynamics in submonolayer InGaAsGaAs quantum dots. <i>Applied Physics Letters</i> , 2006 , 89, 013113	3.4	15	
210	Synthesis of naked plasmonic/magnetic Au/FeO nanostructures by plasmon-driven anti-replacement reaction. <i>Nanotechnology</i> , 2019 , 30, 065605	3.4	15	
209	Room-Temperature High-Gain Long-Wavelength Photodetector via OpticalElectrical Controlling of Hot Carriers in Graphene. <i>Advanced Optical Materials</i> , 2018 , 6, 1800836	8.1	15	
208	Realization of multiphoton lasing from carbon nanodot microcavities. <i>Nanoscale</i> , 2017 , 9, 5957-5963	7.7	14	
207	Indium segregation measured in InGaN quantum well layer. Scientific Reports, 2014, 4, 6734	4.9	14	

Sub-Wavelength Grating Enhanced Ultra-Narrow Graphene Perfect Absorber. Plasmonics, 2018, 13, 226722272 14 206 Multifunctional NiTiO3 nanocoating fabrication based on the dual-Kirkendall effect enabling a stable cathode/electrolyte interface for nickel-rich layered oxides. Journal of Materials Chemistry A, 205 13 14 2018, 6, 2643-2652 Top-gated black phosphorus phototransistor for sensitive broadband detection. Nanoscale, 2018, 204 7.7 14 10, 5852-5858 Regioselective alkyl transfer from phosphonium ylides to functionalized polyfluoroarenes. 203 9.4 14 Chemical Science, 2014, 5, 1934-1939 Luminescent single-crystal ZnO nanorods: Controlled synthesis through altering the solvents 202 3.3 14 composition. Materials Letters. 2012, 81, 229-231 Low threshold amplified spontaneous emission from tin oxide quantum dots: a instantiation of 201 7.7 14 dipole transition silence semiconductors. Nanoscale, 2013, 5, 11561-7 The resonant tunability, enhancement, and damping of plasma waves in the two-dimensional 200 14 3.4 electron gas plasmonic crystals at terahertz frequencies. Applied Physics Letters, 2013, 102, 243507 Quantitative determination of Eliashberg function and evidence of strong electron coupling with 199 3.3 14 multiple phonon modes in heavily overdoped (Bi,Pb)2Sr2CuO6+\(\mathbb{I}\)Physical Review B, 2011, 83, Defect-free thin InAs nanowires grown using molecular beam epitaxy. Nanoscale, 2016, 8, 1401-6 198 7.7 13 Controllable multicolor output, white luminescence and cathodoluminescence properties of high 197 3.7 13 quality NaCeF4:Ln3+ (Ln3+ = Eu3+, Dy3+, Tb3+) nanorods. RSC Advances, 2014, 4, 49916-49923 Dendritic Y4O(OH)9NO3:Eu3+/Y2O3:Eu3+ hierarchical structures: controlled synthesis, growth 196 13 3.3 mechanism, and luminescence properties. CrystEngComm, 2013, 15, 4844 Tailoring electronic properties of InAs nanowires by surface functionalization. Journal of Applied 195 2.5 13 Physics, 2011, 110, 103713 Electronic properties and chemical trends of the arsenic in situ impurities in Hq1\(\text{LCdxTe} : 194 3.3 13 First-principles study. Physical Review B, 2007, 76, Enhanced Performance of HgCdTe Midwavelength Infrared Electron Avalanche Photodetectors 193 2.9 13 With Guard Ring Designs. IEEE Transactions on Electron Devices, 2020, 67, 542-546 Liquid-phase exfoliation of violet phosphorus for electronic applications. SmartMat, 2021, 2, 226-233 192 13 Crystal structure, morphology and luminescent properties of rare earthion-doped SrHPO4 191 12 3.7 nanomaterials. Journal of Rare Earths, 2015, 33, 355-360 Optical Waveguide of Buckled CdS Nanowires Modulated by Strain-Engineering. ACS Photonics, 190 6.3 12 **2018**, 5, 746-751 All-acrylic superelastomers: facile synthesis and exceptional mechanical behavior. Polymer 189 12 4.9 Chemistry, **2018**, 9, 160-168

188	Monodispersed LaF3 nanocrystals: shape-controllable synthesis, excitation-power-dependent multi-color tuning and intense near-infrared upconversion emission. <i>Nanotechnology</i> , 2014 , 25, 065703	3.4	12
187	Coupling of localized surface plasmon modes in compound structure with metallic nanoparticle and nanohole arrays. <i>Journal of Applied Physics</i> , 2010 , 108, 093520	2.5	12
186	Effect of niobium on the oxidation behavior of TiAl. <i>Journal of Materials Research</i> , 2007 , 22, 1486-1490	2.5	12
185	Deformation-induced 🗠 🔁 phase transformation in TiAl alloy compressed at room temperature. <i>Intermetallics</i> , 2007 , 15, 722-726	3.5	12
184	High-frequency rectifiers based on type-II Dirac fermions. <i>Nature Communications</i> , 2021 , 12, 1584	17.4	12
183	In situ synthesis of rice-like ZnGa2O4 for the photocatalytic removal of organic and inorganic pollutants. <i>Materials Science in Semiconductor Processing</i> , 2016 , 56, 251-259	4.3	12
182	High-responsivity and polarization-discriminating terahertz photodetector based on plasmonic resonance. <i>Applied Physics Letters</i> , 2019 , 114, 091105	3.4	11
181	Atomic-Scale Insights into the Dynamics of Growth and Degradation of All-Inorganic Perovskite Nanocrystals. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 4618-4624	6.4	11
180	Nanoscale free-standing magnetoelectric heteropillars. <i>Nanoscale</i> , 2013 , 5, 6747-53	7.7	11
179	Two-step ion-exchange synthetic strategy for obtaining monodisperse NaYF4:Ln3+ nanostructures with multicolor luminescence properties. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 1091-1098	7.1	11
178	White-Emitting Tuning and Energy Transfer in Eu2+/Mn2+-Substituted Apatite-Type Fluorophosphate Phosphors. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 1162-1168	3.8	11
177	Aligned TiOIhanotube/nanoparticle heterostructures with enhanced electrochemical performance as three-dimensional anode for lithium-ion microbatteries. <i>Nanotechnology</i> , 2014 , 25, 455401	3.4	11
176	Cucurbit[7]uril-Based Vesicles Formed by Self-assembly of Supramolecular Amphiphiles. <i>Chinese Journal of Chemistry</i> , 2012 , 30, 2085-2090	4.9	11
175	High-resolution image simulation of overlap structures in TiAl alloy. <i>Journal of Alloys and Compounds</i> , 2009 , 468, 179-186	5.7	11
174	Selective excitation of surface-polariton Bloch waves for efficient transmission of light through a subwavelength hole array in a thin metal film. <i>Physical Review B</i> , 2007 , 76,	3.3	11
173	Selected and Enhanced Single Whispering-Gallery Mode Emission from a Mesostructured Nanomembrane Microcavity. <i>Nano Letters</i> , 2018 , 18, 8035-8040	11.5	11
172	Influence of Plasmonic Effect on the Upconversion Emission Characteristics of NaYF Hexagonal Microrods. <i>Inorganic Chemistry</i> , 2018 , 57, 8200-8204	5.1	11
171	Multi-Band Up-Converted Lasing Behavior in NaYFEYb/Er Nanocrystals. <i>Nanomaterials</i> , 2018 , 8,	5.4	10

170	Synthesis, structure, and photoluminescence properties of novel KBaSc2 (PO4)3:Ce(3+)/Eu(2+)/Tb(3+) phosphors for white-light-emitting diodes. <i>ChemPhysChem</i> , 2015 , 16, 2663-9	3.2	10
169	Analysis of Interface Scattering in AlGaN/GaN/InGaN/GaN Double-Heterojunction High-Electron-Mobility Transistors. <i>Journal of Electronic Materials</i> , 2012 , 41, 2130-2138	1.9	10
168	Electronic structure and chemical bonding of <code>Hand DTa4AlC3</code> phases: Full-potential calculation. <i>Journal of Materials Research</i> , 2008 , 23, 2350-2356	2.5	10
167	Phase transformation in the nitride layer during the oxidation of TiAl-based alloys. <i>Scripta Materialia</i> , 2007 , 56, 773-776	5.6	10
166	Microstructure of Oxide Scales Formed on Ti48Al8Cr2Ag Alloy in Air at 9001000LC. <i>Oxidation of Metals</i> , 2005 , 63, 229-239	1.6	10
165	Surface-States-Modulated High-Performance InAs Nanowire Phototransistor. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 6413-6419	6.4	10
164	Hierarchically Ordered Nanochannel Array Membrane Reactor with Three-Dimensional Electrocatalytic Interfaces for Electrohydrogenation of CO2 to Alcohol. <i>ACS Energy Letters</i> , 2018 , 3, 26	4 9 -2 6 5	5 ¹⁰
163	Hybrid Dirac semimetal-based photodetector with efficient low-energy photon harvesting <i>Light: Science and Applications</i> , 2022 , 11, 53	16.7	10
162	Single-crystal Bi 2 Ga 4 O 9 nanoplates with exposed {110} facets for photocatalytic degradation of Acid Red 1. <i>Molecular Catalysis</i> , 2017 , 433, 354-362	3.3	9
161	Shape-controlled synthesis and facet-dependent performance of single-crystal Bi25GaO39 photocatalysts. <i>CrystEngComm</i> , 2016 , 18, 7715-7721	3.3	9
160	Enhanced photocatalytic performance and morphology evolvement of PbWO4 dendritic nanostructures through Eu3+ doping. <i>RSC Advances</i> , 2016 , 6, 81447-81453	3.7	9
159	Light-Induced Positive and Negative Photoconductances of InAs Nanowires toward Rewritable Nonvolatile Memory. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 1825-1831	4	9
158	Facile large-scale synthesis of monodisperse REF3 (RE = Y, Ce, Nd, Sm-Lu) nano/microcrystals and luminescence properties. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 7666	7.1	9
157	Tunable phase and upconverting luminescence of Gd3+ co-doped NaErF4:Yb3+ nanostructures. <i>Materials Research Bulletin</i> , 2017 , 95, 509-514	5.1	9
156	Upconversion: Simultaneous Realization of Phase/Size Manipulation, Upconversion Luminescence Enhancement, and Blood Vessel Imaging in Multifunctional Nanoprobes Through Transition Metal Mn2+ Doping (Adv. Funct. Mater. 26/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 4196-4196	15.6	9
155	Identification of metal-cage coupling in a single metallofullerene by inelastic electron tunneling spectroscopy. <i>Applied Physics Letters</i> , 2010 , 96, 253110	3.4	9
154	Modulation mechanism of infrared photoreflectance in narrow-gap HgCdTe epilayers: A pump power dependent study. <i>Journal of Applied Physics</i> , 2010 , 108, 023518	2.5	9
153	Direct observation and manipulation of hot electrons at room temperature. <i>National Science Review</i> , 2021 , 8, nwaa295	10.8	9

152	Nanoscale imaging of the photoresponse in PN junctions of InGaAs infrared detector. <i>Scientific Reports</i> , 2016 , 6, 21544	4.9	9
151	A novel transmission model for plasmon-induced transparency in plasmonic waveguide system with a single resonator. <i>RSC Advances</i> , 2016 , 6, 51480-51484	3.7	9
150	Integration of nanoscale light emitters: an efficient ultraviolet and blue random lasing from NaYF4:Yb/Tm hexagonal nanocrystals. <i>Photonics Research</i> , 2018 , 6, 943	6	9
149	Phase purification of GaAs nanowires by prolonging the growth duration in MBE. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 5257-5262	7.1	8
148	Nanofabrication of highly ordered, tunable metallic mesostructures via quasi-hard-templating of lyotropic liquid crystals. <i>Scientific Reports</i> , 2014 , 4, 7420	4.9	8
147	Sub-10nm lanthanide doped BaLuF5 nanocrystals: Shape controllable synthesis, tunable multicolor emission and enhanced near-infrared upconversion luminescence. <i>Materials Research Bulletin</i> , 2015 , 64, 27-32	5.1	8
146	Enhanced Performance of HgCdTe Long-Wavelength Infrared Photodetectors With nBn Design. <i>IEEE Transactions on Electron Devices</i> , 2020 , 67, 2001-2007	2.9	8
145	Dark Mode Driven Extra-narrow and Multiband Absorber. <i>Plasmonics</i> , 2018 , 13, 729-735	2.4	8
144	Distinctive Performance of Terahertz Photodetection Driven by Charge-Density-Wave Order in CVD-Grown Tantalum Diselenide. <i>Advanced Functional Materials</i> , 2019 , 29, 1905057	15.6	8
143	Multicolor tuning towards single red-emission band of upconversion nanoparticles for tunable optical component and optical/x-ray imaging agents via Ce(3+) doping. <i>Nanotechnology</i> , 2015 , 26, 3857	024	8
142	Nanowires: Anomalous and Highly Efficient InAs Nanowire Phototransistors Based on Majority Carrier Transport at Room Temperature (Adv. Mater. 48/2014). <i>Advanced Materials</i> , 2014 , 26, 8232-8233	2 ²⁴	8
141	Spectrum Analysis of 2-D Plasmon in GaN-Based High Electron Mobility Transistors. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2013 , 19, 8400507-8400507	3.8	8
140	Optimization of Optoelectronic Plasmonic Structures. <i>Plasmonics</i> , 2011 , 6, 319-325	2.4	8
139	The mechanism of the photoresponse blueshifts for the n-type conversion region of n+-on-p Hg0.722Cd0.278Te infrared photodiode. <i>Journal of Applied Physics</i> , 2010 , 107, 044513	2.5	8
138	First-principles prediction of the hardness of fluorite TiO2. <i>Physica B: Condensed Matter</i> , 2009 , 404, 79-8	31 .8	8
137	High-quality epitaxial wurtzite structured InAs nanosheets grown in MBE. <i>Nanoscale</i> , 2020 , 12, 271-276	7.7	8
136	Dynamical evolution of anisotropic response of type-II Weyl semimetal TaIrTe under ultrafast photoexcitation. <i>Light: Science and Applications</i> , 2021 , 10, 101	16.7	8
135	Angular dependence of optical modes in metal-insulator-metal coupled quantum well infrared photodetector. <i>AIP Advances</i> , 2016 , 6, 045205	1.5	8

134	Thin tungsten telluride layer preparation by thermal annealing. <i>Nanotechnology</i> , 2016 , 27, 414006	3.4	8
133	A Hierarchically Porous Hollow Structure of Layered Bi2TiO4F2 for Efficient Photocatalysis. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 1892-1899	2.3	7
132	Circular Polarization Discrimination Enhanced by Anisotropic Media. <i>Advanced Optical Materials</i> , 2020 , 8, 1901800	8.1	7
131	Synthesis of dendritic-like BiVO4:Ag heterostructure for enhanced and fast photocatalytic degradation of RhB solution. <i>Materials Research Bulletin</i> , 2016 , 84, 414-421	5.1	7
130	Syntheses, crystal structures and photoluminescence properties of Ca9Y(PO4)5(SiO4)F1.5O0.25:Ln3+ (Ln3+ = Eu3+/Tb3+/Dy3+/Sm3+) phosphors for near-UV white LEDs. <i>RSC Advances</i> , 2016 , 6, 92371-92377	3.7	7
129	Incorporating Tb3+ and Mn2+ into a high efficiency BaCa2MgSi2O8:Eu2+ phosphor and its luminescent properties. <i>RSC Advances</i> , 2013 , 3, 20619	3.7	7
128	Thermodynamic phase diagram for hydrogen on polar InP(111)B surfaces. <i>Journal of Applied Physics</i> , 2010 , 107, 063516	2.5	7
127	First-principles study of deformation-induced phase transformations in Ti-Al intermetallics. <i>Journal of Materials Research</i> , 2009 , 24, 1662-1666	2.5	7
126	Development of an infrared detector: Quantum well infrared photodetector 2009 , 52, 969-977		7
125	Ordered Hierarchical Porous Platinum Membranes with Tailored Mesostructures. <i>Angewandte Chemie</i> , 2010 , 122, 10299-10303	3.6	7
124	Evolution of infrared photoreflectance lineshape with temperature in narrow-gap HgCdTe epilayers. <i>Applied Physics Letters</i> , 2008 , 93, 131914	3.4	7
123	Microscopic Origin of Electrical Compensation in Arsenic-Doped HgCdTe by Molecular Beam Epitaxy: Density Functional Study. <i>Journal of Electronic Materials</i> , 2007 , 36, 890-894	1.9	7
122	Study on Infrared Transmission Spectrum of Sildenafil Citrate Mixed in Traditional Chinese Medicine. <i>Journal of Infrared, Millimeter and Terahertz Waves</i> , 2003 , 24, 1177-1185		7
121	An Effective Approach for the Identification of Carrier Type and Local Inversion Doping in Graphene by Biased Atomic Force Microscopy. <i>Advanced Electronic Materials</i> , 2016 , 2, 1500255	6.4	7
120	Chain flexibility and glass transition temperatures of poly(n-alkyl (meth)acrylate)s: Implications of tacticity and chain dynamics. <i>Polymer</i> , 2021 , 213, 123207	3.9	7
119	Selected-Area Chemical Nanoengineering of Vanadium Dioxide Nanostructures Through Nonlithographic Direct Writing. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800974	4.6	7
118	Wide tunability and electron transfer in GaAs/AlGaAs quantum well photodetector by magnetic field. <i>Applied Physics Letters</i> , 2017 , 110, 192102	3.4	6
117	Au-catalysed free-standing wurtzite structured InAs nanosheets grown by molecular beam epitaxy. Nano Research, 2019 , 12, 2718-2722	10	6

In situ TEM observation of the vapor-solid-solid growth of InAs nanowires. Nanoscale, **2020**, 12, 11711-1 $\frac{1}{17}$ 7 6 116 In Situ Observation of Nucleation and Crystallization of a Single Nanoparticle in Transparent Media. 3.8 6 115 Journal of Physical Chemistry C, **2020**, 124, 15533-15540 Solution properties, unperturbed dimensions, and chain flexibility of poly(1-adamantyl acrylate). 6 2.6 114 Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1526-1531 Complete band gaps in three-dimensional quantum dot photonic crystals. Physical Review B, 2006, 6 113 3.3 Realization of Integrated Narrow Bandpass Filters in the Infrared Region. Journal of Infrared, 6 112 Millimeter and Terahertz Waves, 2004, 25, 1677-1683 Emission energy, exciton dynamics and lasing properties of buckled CdS nanoribbons. Scientific 6 111 4.9 Reports, 2016, 6, 26607 Band gap modulation in □-graphyne by p-n codoping. Europhysics Letters, 2016, 115, 27009 1.6 6 110 Uniformly Broadband Far-Infrared Response From the Photocarrier Tunneling of Mesa Si:P 109 6 2.9 Blocked-Impurity-Band Detector. IEEE Transactions on Electron Devices, 2021, 68, 560-564 Colossal Terahertz Photoresponse at Room Temperature: A Signature of Type-II Dirac Fermiology. 108 16.7 6 ACS Nano, 2021, 15, 5138-5146 Evidencing the structural conversion of hydrothermally synthesized titanate nanorods by in situ 107 13 electron microscopy. Journal of Materials Chemistry A, 2017, 5, 3786-3791 Deep Ultraviolet Emission from Water-Soluble SnO2 Quantum Dots Grown via a Facile Top-Down 106 9.1 5 Strategy. Journal of Materials Science and Technology, 2015, 31, 670-673 Controllable synergistic effect of Yb3+, Er3+ co-doped KLu2F7 with the assistant of defect state. 105 3.3 CrystEngComm, 2016, 18, 2642-2649 Free-Standing InAs Nanobelts Driven by Polarity in MBE. ACS Applied Materials & Driven by Polarity in MBE. ACS Applied Materials & Driven by Polarity in MBE. 104 9.5 5 2019, 11, 44609-44616 Tumor Detection: Remarkable NIR Enhancement of Multifunctional Nanoprobes for In Vivo Trimodal Bioimaging and Upconversion Optical/T2-Weighted MRI-Guided Small Tumor Diagnosis 15.6 (Adv. Funct. Mater. 46/2015). Advanced Functional Materials, 2015, 25, 7102-7102 Photodetectors: Ultrasensitive and Broadband MoS2 Photodetector Driven by Ferroelectrics (Adv. 102 24 5 Mater. 42/2015). Advanced Materials, 2015, 27, 6538-6538 Aqueous Manganese Dioxide Ink for Paper-Based Capacitive Energy Storage Devices. Angewandte 3.6 5 Chemie, 2015, 127, 6904-6907 A Facile Synthesis and Optical Properties of Bundle-Shaped TbPO4[H2O Nanorods. Advances in 100 1 5 Condensed Matter Physics, 2013, 2013, 1-5 Simulation for light power distribution of 3D InGaN/GaN MQW LED with textured surface. Optical 99 2.4 and Quantum Electronics, **2011**, 42, 739-745

98	Deformation-induced []-iDI-2 phase transformation occurring in the twin-intersection region of TiAl alloys. <i>Journal of Materials Research</i> , 2007 , 22, 2416-2422	2.5	5	
97	First principle study on the bonding mechanism of nanoring structure Ga8As8. <i>European Physical Journal D</i> , 2005 , 34, 47-50	1.3	5	
96	Ultrasensitive and Self-Powered Terahertz Detection Driven by Nodal-Line Dirac Fermions and Van der Waals Architecture. <i>Advanced Science</i> , 2021 , 8, e2102088	13.6	5	
95	Strain-engineered room temperature cavity polariton in ZnO whispering gallery microcavity. <i>Applied Physics Letters</i> , 2020 , 116, 021104	3.4	5	
94	Chirality-Assisted AharonovAnandan Geometric-Phase Metasurfaces for Spin-Decoupled Phase Modulation. <i>ACS Photonics</i> , 2021 , 8, 1847-1855	6.3	5	
93	Ternary 2D Layered Material FePSe3 and Near-Infrared Photodetector. <i>Advanced Electronic Materials</i> , 2021 , 7, 2100207	6.4	5	
92	Tailoring Active Far-Infrared Resonator with Graphene Metasurface and Its Complementary. <i>Plasmonics</i> , 2017 , 12, 353-360	2.4	4	
91	A visible high efficiency and polarization-insensitive 34-level dielectric metasurface hologram. <i>RSC Advances</i> , 2017 , 7, 26371-26376	3.7	4	
90	Structure and photoluminescence studies on europium- and manganese-substituted eulytite-type orthophosphate phosphors. <i>New Journal of Chemistry</i> , 2015 , 39, 9951-9957	3.6	4	
89	Crystal structures, tunable emission and energy transfer of a novel GdAl12O18N:Eu2+,Tb3+oxynitride phosphor. <i>New Journal of Chemistry</i> , 2016 , 40, 2637-2643	3.6	4	
88	Study of Crystallization and Coalescence of Nanocrystals in Amorphous Glass at High Temperature. <i>Inorganic Chemistry</i> , 2019 , 58, 9500-9504	5.1	4	
87	Facile hydrothermal synthesis and luminescent properties of Eu-doped CaF2NF3 alkaline-earth ternary fluoride microspheres. <i>RSC Advances</i> , 2014 , 4, 35750	3.7	4	
86	Raman mapping of laser-induced changes and ablation of InAs nanowires. <i>Applied Physics A: Materials Science and Processing</i> , 2014 , 115, 885-893	2.6	4	
85	Fabrication and characterization of graphene derived from SiC. <i>Science China: Physics, Mechanics and Astronomy</i> , 2013 , 56, 2386-2394	3.6	4	
84	Catalytic effect and nucleation stability of Au on GaAs(111)B surface. <i>Journal of Applied Physics</i> , 2010 , 108, 013526	2.5	4	
83	Studies on structures, electronic and magnetic properties of TM-doped InnSbn (n=7🛭2,14,16) clusters (TM=Mn, Fe, and Co). <i>Journal of Applied Physics</i> , 2011 , 109, 014322	2.5	4	
82	Study on the p-type QWIP-LED device 2006 , 49, 401-410		4	
81	Photonic Band Gap in Two-Dimensional Anisotropic Photonic Crystal with Rectangular Bars. <i>Journal of Infrared, Millimeter and Terahertz Waves</i> , 2003 , 24, 963-971		4	

(2010-2022)

80	Recent Progress in Improving the Performance of Infrared Photodetectors via Optical Field Manipulations <i>Sensors</i> , 2022 , 22,	3.8	4
79	Mechanism of dark current dependence on reverse voltage in mid-wavelength infrared HgCdTe mesa PIN avalanche diode. <i>Optical and Quantum Electronics</i> , 2021 , 53, 1	2.4	4
7 ⁸	Quasiadiabatic electron transport in room temperature nanoelectronic devices induced by hot-phonon bottleneck. <i>Nature Communications</i> , 2021 , 12, 4752	17.4	4
77	High-performance HgCdTe avalanche photodetector enabled with suppression of band-to-band tunneling effect in mid-wavelength infrared. <i>Npj Quantum Materials</i> , 2021 , 6,	5	4
76	Controllable synthesis of multi-morphological SrWO4:Ln3+ (Ln = Eu, Tb) hierarchical structures and their luminescence properties. <i>CrystEngComm</i> , 2019 , 21, 6482-6490	3.3	3
75	Detection of Cell Viability via Fluorescence Labeling of Silicate Phosphor with a Low-Temperature Superlong Persistent Luminescence <i>ACS Applied Bio Materials</i> , 2019 , 2, 2610-2616	4.1	3
74	Cut-off wavelength manipulation of pixel-level plasmonic microcavity for long wavelength infrared detection. <i>Applied Physics Letters</i> , 2019 , 114, 061104	3.4	3
73	Rapid and Precise Wavelength Determination Approach Based on Visually Patterned Integrated Narrow Bandpass Filters. <i>IEEE Photonics Journal</i> , 2019 , 11, 1-7	1.8	3
72	Evolution of morphology and microstructure of GaAs/GaSb nanowire heterostructures. <i>Nanoscale Research Letters</i> , 2015 , 10, 108	5	3
71	Linear array of charge sensitive infrared phototransistors for long wavelength infrared detection. <i>Applied Physics Letters</i> , 2020 , 116, 233501	3.4	3
70	Growth Processes of LuF3 Upconversion Nanoflakes with the Assistance of Amorphous Nanoclusters. <i>ACS Applied Nano Materials</i> , 2019 , 2, 5254-5259	5.6	3
69	Simulation of InGaN/GaN light-emitting diodes with a non-local quantum well transport model. <i>Optical and Quantum Electronics</i> , 2013 , 45, 597-604	2.4	3
68	Tysonite type Gd1¶CayF3¶ solid solution: hydrothermal synthesis and luminescence properties. <i>CrystEngComm</i> , 2013 , 15, 9930	3.3	3
67	Au Nanoarrays: Surface Plasmon-Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays (Small 20/2015). <i>Small</i> , 2015 , 11, 2346-2346	11	3
66	The enhanced optical coupling in a quantum well infrared photodetector based on a resonant mode of an airdielectrichetal waveguide. <i>Optical and Quantum Electronics</i> , 2015 , 47, 2347-2357	2.4	3
65	The enhanced infrared absorption of quantum well infrared photodetector based on a hybrid structure of periodic gold stripes overlaid with a gold film. <i>Optics Communications</i> , 2014 , 328, 91-95	2	3
64	Simulation of superconducting single photon detector coupled with metalihsulatorihetal concentric ring grating. <i>Optical and Quantum Electronics</i> , 2014 , 46, 1253-1259	2.4	3
63	First-principles investigations of the magnetic properties of graphite boron nitride sheet induced by Fe doping. <i>Journal of Physics Condensed Matter</i> , 2010 , 22, 205501	1.8	3

62	The theory and experiment of very-long-wavelength 256¶ GaAs/Al x Ga1№ As quantum well infrared detector linear arrays 2008 , 51, 805-812		3
61	Deep UV random lasing from NaGdF:Yb,Tm upconversion nanocrystals in amorphous borosilicate glass. <i>Optics Letters</i> , 2020 , 45, 3095-3098	3	3
60	Ultralow Threshold, Single-Mode InGaAs/GaAs Multiquantum Disk Nanowire Lasers. <i>ACS Nano</i> , 2021 , 15, 9126-9133	16.7	3
59	Ferroelastic domain structure and phase transition in single-crystalline [PbZn1/3Nb2/3O3]1-x[PbTiO3]x observed via in situ x-ray microbeam. <i>Journal of the European Ceramic Society</i> , 2018 , 38, 1488-1497	6	3
58	Photodetectors: Ultrasensitive Room-Temperature Terahertz Direct Detection Based on a Bismuth Selenide Topological Insulator (Adv. Funct. Mater. 31/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870219	15.6	3
57	Slowing Hot-Electron Relaxation in Mix-Phase Nanowires for Hot-Carrier Photovoltaics. <i>Nano Letters</i> , 2021 , 21, 7761-7768	11.5	3
56	Direct Observation of Oxygen Evolution and Surface Restructuring on MnO Nanocatalysts Using and Transmission Electron Microscopy. <i>Nano Letters</i> , 2021 , 21, 7012-7020	11.5	3
55	Photodetectors: High-Responsivity Graphene/InAs Nanowire Heterojunction Near-Infrared Photodetectors with Distinct Photocurrent On/Off Ratios (Small 8/2015). <i>Small</i> , 2015 , 11, 890-890	11	2
54	Realizing single-mode lasing of cadmium selenide nanoribbons with strain engineering. <i>Applied Physics Letters</i> , 2020 , 116, 191104	3.4	2
53	InGaAsP/InP single photon avalanche diodes with ultra-high photon detection efficiency. <i>Optical and Quantum Electronics</i> , 2020 , 52, 1	2.4	2
52	Chemical potential effects on polytypism in Au-catalyzed GaAs nanowire molecular beam epitaxy growth: A first-principles study. <i>Chemical Physics Letters</i> , 2016 , 644, 147-151	2.5	2
51	Heterogeneous catalytic oxidation of pyridines to N-oxides under mild conditions using tungsten-loaded TiO2. <i>Reaction Kinetics, Mechanisms and Catalysis</i> , 2016 , 119, 235-243	1.6	2
50	Measuring the carrier dynamics of photocatalyst micrograins using the Christiansen effect. <i>Journal of Chemical Physics</i> , 2017 , 146, 234202	3.9	2
49	Formation of Self-Connected SiGe Lateral Nanowires and Pyramids on Rib-Patterned Si(1 1 10) Substrate. <i>Nanoscale Research Letters</i> , 2017 , 12, 70	5	2
48	Surface Plasmon Resonance Enhanced Spontaneous Upconversion and Stimulated Emissions in Glass Ceramics Containing Ba2LaF7 Nanocrystals. <i>Advances in Condensed Matter Physics</i> , 2017 , 2017, 1-6	1	2
47	Impact ionization in quantum well infrared photodetectors with different number of periods. <i>Journal of Applied Physics</i> , 2012 , 111, 034504	2.5	2
46	Orientation relationships between TiB (B27), B2, and Ti3Al phases. <i>Journal of Materials Research</i> , 2009 , 24, 1688-1692	2.5	2
45	Optical property of amorphous semiconductor mercury cadmium telluride from first-principles study. <i>Science in China Series D: Earth Sciences</i> , 2009 , 52, 1928-1932		2

44	TEM Study of the Initial Oxidation of Ti42Al48Cr8Ag2. Oxidation of Metals, 2007, 68, 65-76	1.6	2
43	Aligned silicon carbide nanocrystals at the SiO2/Si interface by C implantation into SiO2 matrices. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 2591	2.9	2
42	Enhanced Performance of a Soft Strain Sensor by Combining Microcracks with Wrinkled Structures. <i>Physica Status Solidi - Rapid Research Letters</i> , 2020 , 14, 2000400	2.5	2
41	The mechanism and process of spontaneous boron doping in graphene in the theoretical perspective. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2016 , 380, 3384-3388	2.3	2
40	Effect of microstructure on chain flexibility and glass transition temperature of polybenzofulvene. <i>Polymer</i> , 2021 , 212, 123276	3.9	2
39	A strategy to enhance the up-conversion luminescence of nanospherical, rod-like and tube-like NaYF4: Yb3+, Er3+ (Tm3+) by combining with carbon dots. <i>CrystEngComm</i> , 2021 , 23, 935-943	3.3	2
38	Strong terahertz response in quantum well photodetector based on intradonor transition by magnetic field. <i>AIP Advances</i> , 2018 , 8, 125014	1.5	2
37	Anisotropic Hot-Electron Kinetics Revealed by Terahertz Fluctuation. <i>ACS Photonics</i> , 2021 , 8, 2674-2682	6.3	2
36	Advanced Thin Film Photo-Thermal Materials and Applications 2019 , 317-381		1
35	Thermoplastic Elastomers Based on Block, Graft, and Star Copolymers 2017 ,		1
35	Thermoplastic Elastomers Based on Block, Graft, and Star Copolymers 2017, Structural and Energetic Analysis of Group V Impurities in p-Type HgCdTe: The Case of As and Sb. Journal of Electronic Materials, 2014, 43, 2849-2853	1.9	1
	Structural and Energetic Analysis of Group V Impurities in p-Type HgCdTe: The Case of As and Sb.	1.9	
34	Structural and Energetic Analysis of Group V Impurities in p-Type HgCdTe: The Case of As and Sb. <i>Journal of Electronic Materials</i> , 2014 , 43, 2849-2853 Interaction Between AsHg and V Hg in Arsenic-Doped Hg1 Cd x Te. <i>Journal of Electronic Materials</i>		1
34	Structural and Energetic Analysis of Group V Impurities in p-Type HgCdTe: The Case of As and Sb. <i>Journal of Electronic Materials</i> , 2014 , 43, 2849-2853 Interaction Between AsHg and V Hg in Arsenic-Doped Hg1 Cd x Te. <i>Journal of Electronic Materials</i> , 2013 , 42, 3054-3058		1
34 33 32	Structural and Energetic Analysis of Group V Impurities in p-Type HgCdTe: The Case of As and Sb. <i>Journal of Electronic Materials</i> , 2014 , 43, 2849-2853 Interaction Between AsHg and V Hg in Arsenic-Doped Hg1 Cd x Te. <i>Journal of Electronic Materials</i> , 2013 , 42, 3054-3058 Terahertz plasmon resonances in GaN and graphene 2013 , Low-Dimensional Semiconductor Structures for Optoelectronic Applications. <i>Advances in</i>	1.9	1 1
34 33 32 31	Structural and Energetic Analysis of Group V Impurities in p-Type HgCdTe: The Case of As and Sb. <i>Journal of Electronic Materials</i> , 2014 , 43, 2849-2853 Interaction Between AsHg and V Hg in Arsenic-Doped Hg1 Cd x Te. <i>Journal of Electronic Materials</i> , 2013 , 42, 3054-3058 Terahertz plasmon resonances in GaN and graphene 2013 , Low-Dimensional Semiconductor Structures for Optoelectronic Applications. <i>Advances in Condensed Matter Physics</i> , 2015 , 2015, 1-2	1.9	1 1 1
34 33 32 31 30	Structural and Energetic Analysis of Group V Impurities in p-Type HgCdTe: The Case of As and Sb. <i>Journal of Electronic Materials</i> , 2014 , 43, 2849-2853 Interaction Between AsHg and V Hg in Arsenic-Doped Hg1 Cd x Te. <i>Journal of Electronic Materials</i> , 2013 , 42, 3054-3058 Terahertz plasmon resonances in GaN and graphene 2013 , Low-Dimensional Semiconductor Structures for Optoelectronic Applications. <i>Advances in Condensed Matter Physics</i> , 2015 , 2015, 1-2 First principles study of half Heusler alloys PdFeBi and PdCoBi 2014 , Simulation of InGaN/GaN light-emitting diodes with a non-local quantum well transport model	1.9	1 1 1 1 1

26	TEM observations of twin intersections in a Till7All2Cr2NbD.1Y alloy compressed at room temperature. <i>Journal of Alloys and Compounds</i> , 2008 , 454, 201-205	5.7	1
25	THERMAL RADIATION PROPERTY OF A THREE DIMENSIONAL PHOTONIC CRYSTAL BASED ON MULTIPLE SCATTERING METHOD. <i>Journal of Infrared, Millimeter and Terahertz Waves</i> , 2007 , 27, 425-434	4	1
24	Design of violet InGaN light-emitting diode with staggered quantum well structure. <i>Optoelectronics Letters</i> , 2008 , 4, 399-402	0.7	1
23	Dynamics of the damping oscillator formed by the collective generation of surface polaritons for extraordinary light transmission through subwavelength hole arrays in thin metal films. <i>Physical Review B</i> , 2007 , 76,	3.3	1
22	Coupled Tamm plasmon polaritons induced narrow bandpass filter with ultra-wide stopband. <i>Nano Research</i> ,1	10	1
21	Effect of defect state on photon synergistic process in KLu2F7:Yb3+, Er3+ nanoparticles. <i>Journal of Solid State Chemistry</i> , 2016 , 242, 222-227	3.3	1
20	Dual-color charge-sensitive infrared phototransistors with dynamic optical gate. <i>Applied Physics Letters</i> , 2021 , 119, 103505	3.4	1
19	Collapse Breakdown in Mid-wavelength Infrared HgCdTe Avalanche Photodetector. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2022 , 1-1	3.8	1
18	Ultrathin Dielectric Perfect Absorber: Large-Area Low-Cost Dielectric Perfect Absorber by One-Step Sputtering (Advanced Optical Materials 9/2019). <i>Advanced Optical Materials</i> , 2019 , 7, 197003.	5 ^{8.1}	0
17	Photothermal Diatomite/Carbon Nanotube Combined Aerogel for High-Efficiency Solar Steam Generation and Wastewater Purification. <i>Solar Rrl</i> ,2101011	7.1	O
16	Anchored metallocene linear low-density polyethene cellulose nanocrystal composites. <i>Polymer International</i> , 2021 , 70, 564-572	3.3	0
15	Photonic slide rule with metasurfaces <i>Light: Science and Applications</i> , 2022 , 11, 77	16.7	Ο
14	Self-frequency-conversion nanowire lasers Light: Science and Applications, 2022, 11, 120	16.7	0
13	Theoretical Analysis of Strain-Optoelectronic Properties in Externally Deformed Ge/GeSi Quantum Well Nanomembranes via Neutral Plane Modulation. <i>Physica Status Solidi (B): Basic Research</i> , 2020 , 257, 1900732	1.3	
12	Microwave-Induced DC Response of Spin Wave Resonance Driven by an Anisotropic Built-In Field in a Permalloy Thin Strip. <i>IEEE Transactions on Magnetics</i> , 2014 , 50, 1-4	2	
11	Introduction to the OQE special issue on numerical simulation of optoelectronic devices NUSOD 1 2. <i>Optical and Quantum Electronics</i> , 2013 , 45, 571-571	2.4	
10	In-situ Observation of Cu Filaments Evolution in SiO2 layer. <i>Microscopy and Microanalysis</i> , 2017 , 23, 1623	201,623	
9	Introduction to the OQE special issue on Numerical Simulation of Optoelectronic Devices (NUSODII1). Optical and Quantum Electronics, 2012, 44, 65-65	2.4	

LIST OF PUBLICATIONS

8	Effect of TCA-depletion of extrinsic polypeptides on electron transport on oxidizing side of PS II. <i>Science Bulletin</i> , 1997 , 42, 227-231	
7	Electron microscopy study of different stages of oxidation of Ti-47Al-2Nb-2Cr-0.15B and Ti-45Al-15Nb at 900 degrees C. <i>Journal of Microscopy</i> , 2008 , 231, 124-33	1.9
6	Free electron laser induced two-photon photoconductivity in Hg1-xCdxTe. <i>Science in China Series A: Mathematics</i> , 2001 , 44, 1579-1584	
5	Dispersion Curve of PbTiO3 in Tetragonal and Cubic Phases. <i>Journal of Infrared, Millimeter and Terahertz Waves</i> , 2001 , 22, 469-476	
4	Raman spectroscopy of single quantum well wires. Science Bulletin, 2000, 45, 2138-2141	
3	Remarkable optical coupling enhancement with laser selective focusing devices. <i>Optical and Quantum Electronics</i> , 2016 , 48, 1	2.4
2	Axiotaxy driven growth of belt-shaped InAs nanowires in molecular beam epitaxy. <i>Nano Research</i> , 2021 , 14, 2330	10
1	Multiple Modes Response of Co-Aperture 2D/1D Phototransistors. <i>Advanced Materials Interfaces</i> ,21025	56β 6